Article (Périodiques scientifiques)
Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics
DESHPANDE, Saurabh; SOSA, Raul Ian; BORDAS, Stéphane et al.
2023In Frontiers in Materials
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
fmats-10-1128954.pdf
Postprint Éditeur (43.88 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Surrogate Modeling; Deep Learning; CNN U-NET; Graph U-Net; Perceiver IO; Finite Element Method
Résumé :
[en] Deep learning surrogate models are being increasingly used in accelerating scientific simulations as a replacement for costly conventional numerical techniques. However, their use remains a significant challenge when dealing with real-world complex examples. In this work, we demonstrate three types of neural network architectures for efficient learning of highly non-linear deformations of solid bodies. The first two architectures are based on the recently proposed CNN U-NET and MAgNET (graph U-NET) frameworks which have shown promising performance for learning on mesh-based data. The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks–a class that has revolutionised diverse engineering fields and is still unexplored in computational mechanics. We study and compare the performance of all three networks on two benchmark examples, and show their capabilities to accurately predict the non-linear mechanical responses of soft bodies.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
DESHPANDE, Saurabh  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
SOSA, Raul Ian ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
LENGIEWICZ, Jakub ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics
Date de publication/diffusion :
mars 2023
Titre du périodique :
Frontiers in Materials
eISSN :
2296-8016
Maison d'édition :
Frontiers Media S.A., Lausanne, Suisse
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Projet européen :
H2020 - 764644 - RAINBOW - Rapid Biomechanics Simulation for Personalized Clinical Design
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 29 novembre 2022

Statistiques


Nombre de vues
234 (dont 17 Unilu)
Nombre de téléchargements
129 (dont 6 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
13
citations OpenAlex
 
21
citations WoS
 
18

Bibliographie


Publications similaires



Contacter ORBilu