Article (Périodiques scientifiques)
binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets
HICKL, Oskar; Queirós, Pedro; WILMES, Paul et al.
2022In Briefings in Bioinformatics
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
bbac431.pdf
Postprint Éditeur (1.94 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
metagenome-assembled genome; marker gene sets; iterative clustering; embedding; dimensionality reduction; t-SNE; MAGs
Résumé :
[en] The reconstruction of genomes is a critical step in genome-resolved metagenomics and for multi-omic data integration from microbial communities. Here, we present binny, a binning tool that produces high-quality metagenome-assembled genomes (MAG) from both contiguous and highly fragmented genomes. Based on established metrics, binny outperforms or is highly competitive with commonly used and state-of-the-art binning methods and finds unique genomes that could not be detected by other methods. binny uses k-mer-composition and coverage by metagenomic reads for iterative, nonlinear dimension reduction of genomic signatures as well as subsequent automated contig clustering with cluster assessment using lineage-specific marker gene sets. When compared with seven widely used binning algorithms, binny provides substantial amounts of uniquely identified MAGs and almost always recovers the most near-complete (⁠>95% pure, >90% complete) and high-quality (⁠>90% pure, >70% complete) genomes from simulated datasets from the Critical Assessment of Metagenome Interpretation initiative, as well as substantially more high-quality draft genomes, as defined by the Minimum Information about a Metagenome-Assembled Genome standard, from a real-world benchmark comprised of metagenomes from various environments than any other tested method.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
- Luxembourg Centre for Systems Biomedicine (LCSB): Eco-Systems Biology (Wilmes Group)
Disciplines :
Génétique & processus génétiques
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
HICKL, Oskar ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Queirós, Pedro
WILMES, Paul ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
MAY, Patrick  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Heintz-Buschart, Anna
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets
Date de publication/diffusion :
13 octobre 2022
Titre du périodique :
Briefings in Bioinformatics
ISSN :
1467-5463
eISSN :
1477-4054
Maison d'édition :
Oxford University Press, Royaume-Uni
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Projet FnR :
FNR11823097 - Microbiomes In One Health, 2017 (01/09/2018-28/02/2025) - Paul Wilmes
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 14 novembre 2022

Statistiques


Nombre de vues
239 (dont 4 Unilu)
Nombre de téléchargements
187 (dont 1 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
10
OpenCitations
 
1
citations OpenAlex
 
20
citations WoS
 
16

Bibliographie


Publications similaires



Contacter ORBilu