Pas de texte intégral
Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
The geometric data on the boundary of convex subsets of hyperbolic manifolds
chen, qiyu; SCHLENKER, Jean-Marc
2022
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Résumé :
[en] Let $N$ be a geodesically convex subset in a convex co-compact hyperbolic manifold $M$ with incompressible boundary. We assume that each boundary component of $N$ is either a boundary component of $\partial_\infty M$, or a smooth, locally convex surface in $M$. We show that $N$ is uniquely determined by the boundary data defined by the conformal structure on the boundary components at infinity, and by either the induced metric or the third fundamental form on the boundary components which are locally convex surfaces. We also describe the possible boundary data. This provides an extension of both the hyperbolic Weyl problem and the Ahlfors-Bers Theorem. Using this statement for quasifuchsian manifolds, we obtain existence results for similar questions for convex domains $\Omega\subset \HH^3$ which meets the boundary at infinity $\partial_{\infty}\HH^3$ either along a quasicircle or along a quasidisk. The boundary data then includes either the induced metric or the third fundamental form in $\HH^3$, but also an additional ``gluing'' data between different components of the boundary, either in $\HH^3$ or in $\partial_\infty\HH^3$.
Disciplines :
Mathématiques
Auteur, co-auteur :
chen, qiyu
SCHLENKER, Jean-Marc ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Langue du document :
Anglais
Titre :
The geometric data on the boundary of convex subsets of hyperbolic manifolds
Date de publication/diffusion :
octobre 2022
Version :
1
Nombre de pages :
47
Disponible sur ORBilu :
depuis le 24 octobre 2022

Statistiques


Nombre de vues
139 (dont 4 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu