Thèse de doctorat (Mémoires et thèses)
Minimizing Supervision for Vision-Based Perception and Control in Autonomous Driving
ROBINET, François
2022
 

Documents


Texte intégral
thesis-francois-robinet.pdf
Postprint Auteur (8.23 MB)
PhD Dissertation
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
autonomous driving; self-supervision; deep learning; computer vision; self-driving; unsupervised learning
Résumé :
[en] The research presented in this dissertation focuses on reducing the need for supervision in two tasks related to autonomous driving: end-to-end steering and free space segmentation. For end-to-end steering, we devise a new regularization technique which relies on pixel-relevance heatmaps to force the steering model to focus on lane markings. This improves performance across a variety of offline metrics. In relation to this work, we publicly release the RoboBus dataset, which consists of extensive driving data recorded using a commercial bus on a cross-border public transport route on the Luxembourgish-French border. We also tackle pseudo-supervised free space segmentation from three different angles: (1) we propose a Stochastic Co-Teaching training scheme that explicitly attempts to filter out the noise in pseudo-labels, (2) we study the impact of self-training and of different data augmentation techniques, (3) we devise a novel pseudo-label generation method based on road plane distance estimation from approximate depth maps. Finally, we investigate semi-supervised free space estimation and find that combining our techniques with a restricted subset of labeled samples results in substantial improvements in IoU, Precision and Recall.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Services and Data management research group (SEDAN)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ROBINET, François ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Langue du document :
Anglais
Titre :
Minimizing Supervision for Vision-Based Perception and Control in Autonomous Driving
Date de soutenance :
04 octobre 2022
Nombre de pages :
130
Institution :
Unilu - University of Luxembourg, Luxembourg, Luxembourg
Intitulé du diplôme :
Doctor of the University of Luxembourg in Computer Science
Promoteur :
Président du jury :
Membre du jury :
AOUADA, Djamila  
Hundt, Christian
Müller, Christian
Focus Area :
Computational Sciences
Projet FnR :
FNR13301060 - Machine Learning For Risk Assessment In Semi-autonomous Vehicles, 2018 (01/10/2018-31/08/2022) - François Robinet
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 06 octobre 2022

Statistiques


Nombre de vues
220 (dont 20 Unilu)
Nombre de téléchargements
159 (dont 9 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu