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UNIVERSITY OF LUXEMBOURG

Abstract

Interdisciplinary Centre for Security, Reliability and Trust

SEDAN Research Group

Minimizing Supervision for Vision-Based Perception and
Control in Autonomous Driving

by François Robinet

The research presented in this dissertation focuses on reducing the need for supervision in
two tasks related to autonomous driving: end-to-end steering and free space segmentation.

For end-to-end steering, we devise a new regularization technique which relies on pixel-
relevance heatmaps to force the steering model to focus on lane markings. This improves
performance across a variety of offline metrics. In relation to this work, we publicly
release the RoboBus dataset, which consists of extensive driving data recorded using a
commercial bus on a cross-border public transport route on the Luxembourgish-French
border.

We also tackle pseudo-supervised free space segmentation from three different angles:
(1) we propose a Stochastic Co-Teaching training scheme that explicitly attempts to filter
out the noise in pseudo-labels, (2) we study the impact of self-training and of different data
augmentation techniques, (3) we devise a novel pseudo-label generation method based on
road plane distance estimation from approximate depth maps.

Finally, we investigate semi-supervised free space estimation and find that combining
our techniques with a restricted subset of labeled samples results in substantial improve-
ments in IoU, Precision and Recall.

HTTPS://UNI.LU
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Chapter 1

Introduction

1.1 Importance of Autonomous Driving Technology

Autonomous driving technology has made impressive progress over the last two decades.
One of the first milestones was achieved in 2005 at the Grand Challenge organized by the
Defense Advanced Research Projects Agency (DARPA). At this occasion, five autonomous
vehicles built by different research teams were able to safely navigate some 212 kilometers
of the Mojave Desert [BIS07]. The performance was topped only two years later during the
DARPA Urban Challenge, in the much more challenging environment of a mock-up town
[BIS09]. In organizing these two competitions, DARPA hoped to spur the development
of technologies needed to create the first fully-autonomous ground vehicles [BIS07]. This
goal was met, and academic interests has since translated into industrial applications, with
many manufacturers currently racing to build and release such vehicles on the market.

Road accidents have become a major health concern world-wide. The Association for
Safe International Road Travel estimates that 1.35 million people die in road crashes each
year [SIRT]. Up to another 50 million survive an accident with non-fatal injuries, but
sometimes have to suffer long-term disabilities. For children and adults below the age
of 30, injuries sustained in road crashes are the single greatest cause of death [SIRT].
An extensive survey of the causes of crashes from the National Highway Traffic Safety
Administration (NHTSA) in the United States concluded that more than 94% of car
accidents are caused at least partly by human error [Adm13]. Analysis of this survey
reveals that the leading human-related causes of accidents can be attributed to alcohol
consumption (30%), speeding (30%) and distracted driving (21%). Driver drowsiness also
accounts for almost 3% of the analyzed accidents [Adm13]. The progressive increase of
car autonomy is expected to reduce both the quantity and the severity of these accidents.

Given the challenge presented by full automation and the fact that Europeans drive
cars that are on average 12 years old [ACE], car manufacturers are already shipping par-
tial automation features in the form of Advanced Driver Assistance Systems (ADAS).
Popular examples of these systems include forward collision warning, automatic emer-
gency breaking, lane keeping assistance, or blind spot detection. The Highway Loss Data
Institute and Insurance Institute for Highway Safety have compared police-reported crash
rates and insurance claims for vehicles with and without ADAS technologies, and report
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decreases in both crashes and claim rates [Fac]. In the case of vehicles equipped with au-
tomatic emergency breaking, the study reports a decrease of 50% of front-to-rear crashes
and of 27% of accidents involving pedestrians.

The advent of autonomous vehicles may also challenge the insurance industry [Nel21].
While the number and severity of accidents are expected to decrease, the expensive sensor
suite on-board self-driving vehicles will likely make damage claims more expensive. There
are also major legal liability concerns on the horizon: as driving becomes more automated,
the boundary between human and system failure will get blurrier.

Beyond road safety benefits, the availability of autonomous vehicles also has the poten-
tial to drastically improve access to transportation for the elderly, or for people suffering
from a disability that prevents them from driving. The possibility of a vehicle traveling
without a human driver is also likely to enable robo-taxi services at affordable prices,
decreasing the need for individual car ownership. Since individual vehicles are idle most
of the day, shared mobility would decrease the total amount of vehicles needed, and lower
the carbon footprint of the whole industry. Finally, another ecological benefit could come
from Vehicle-to-Vehicle communication: once cars start anticipating braking and acceler-
ation decisions they will be able to further optimize their energy consumption [MMB16].

1.2 Autonomous Mobile Robots Design

The study of mobile robotics covers a wide-range of subjects and is by nature interdisci-
plinary. The traditional robotics view breaks the problem of navigation down into several
distinct parts. One common break-down is depicted on Figure 1.1 and consists of the
following steps operating in a cycle.

Sensing The sensor-suite embedded in autonomous vehicles usually consists of long-
and short-range radars, LiDARs to build a sparse 3D point cloud of the surrounding
environments, and cameras to collect high-resolution contextual information. These are
accompanied by a precise Global Navigation Satellite System (GNSS) for global position-
ing and an Inertial Measurement Unit (IMU) to measure the acceleration of the robot.

Perception The Perception module is responsible for analyzing raw data coming from
the sensors. Common steps include the tracking or segmentation of objects (pedestrians,
other vehicles, traffic signs, lane markings, ...) or the identification of free space where
the vehicle may drive, and the detection of landmarks that may be used to localize the
vehicle precisely on a map.

Localization & Mapping The landmark features detected from the point cloud or
the camera frames are usually matched against a pre-recorded map in order to perform
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Figure 1.1: The processing steps of an autonomous mobile robot.
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localization. When relying on a pre-existing map is not possible, another option is to build
the map and localize in it at the same time, a task known as Simultaneous Localization
and Mapping (SLAM) [SNS11].

Planning Mission-level planning consists in identifying the high-level steps that are
needed to reach a set goal, for example which roads to take in order to reach a particular
destination. This high-level plan will however not contain the details needed to navigate
specific traffic situations, such as lane changing, overtaking or obstacle avoidance deci-
sions. Making these behavior-level decisions hinges on the model of the environment built
by the perception module. Finally, the trajectory planner is responsible for converting the
behavior plan into a trajectory plan: a series of local positions and speeds to be reached
by the vehicle over the next few seconds.

Control & Actuation: Finally, the control module uses a model of the kinematics
and dynamics of the vehicle in order to decide which acceleration, steering and braking
commands to apply in order to satisfy the trajectory plan. Corresponding commands are
sent to the Engine Control Unit (ECU) of the vehicle over a drive-by-wire interface.

Each of the steps of the mobile robotics pipeline is rooted in an extensive body of
research. In this thesis, we will focus our attention on two vision-based tasks: end-to-end
control and free space perception. We will define these tasks more precisely in Section
1.5, after outlining the challenges of vision-based driving.

1.3 Challenges of Vision-Based Systems

Since humans have evolved to have a sense of sight that is highly adapted to the tasks of
our everyday lives, it might be tempting to mistakenly assume that computers can easily
be programmed to do the same. A popular anecdote in the community relates that solving
computer vision was initially assigned as a student summer project at MIT. In fact, a team
of 10 students worked on the Summer Vision Project in 1966 [Pap66]. Their ambitious
goal was to design a system capable of performing foreground-background segmentation
and object classification. Decades of research have since led to a lot of progress towards
this goal, but solving these problems robustly for a variety of image domains remains an
open research area.

Three specific categories of computer vision challenges are illustrated on Figure 1.2.
First, semantically similar entities may take very different shapes. Second, since digital
images are represented as 3D tensors of pixel values, changes to a frame that only slightly
affect its semantic content may drastically alter its numerical representation. Finally,
contextual understanding is an important part of coping with visual ambiguities. The
real stake in computer vision is therefore to process raw pixel values into a different
representation that efficiently encodes the semantics and disentangles them such that (1)



1.4. Limitations of Supervised Learning 5

slight changes in the semantics result in similar small changes of the representation, and
(2) changes that only affect a specific part of the semantics (e.g. changing the color of a
vehicle) are reflected in only local changes of the representation.

(a) Object variations

(b) Illumination changes

(c) Visual ambiguities

Figure 1.2: Some of the challenges that vision-based autonomous systems face.
The sources for these images are provided in Appendix A.

1.4 Limitations of Supervised Learning

Given that handcrafting a set of programmable rules to achieve computer vision tasks in
their full generality seems impossible, researchers have instead turned to learning-based
methods that infer representations from real data. The currently dominant learning meth-
ods in the field are based on artificial neural networks, and in particular Convolutional
Neural Networks (CNNs). Although the backpropagation-based learning algorithm was
already discussed in the 1960s [Sch14] and the CNN architecture was proposed for doc-
ument recognition in 1998 [Lec+98], the last two decades saw a revolution in the field.
This progress was largely made possible because of the combination of three factors.
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1. The widespread availability of affordable Graphics Processing Units (GPUs) made
the training of neural networks orders of magnitude faster. It also enabled re-
searchers to build larger and more capable models.

2. Many advances were recently made in training algorithms [KB15] and network ar-
chitecture design [He+16; RFB15]. The availability of software libraries for tensor
manipulation and automatic differentiation have also made such design patterns
easier to explore and reuse [Aba+15; Pas+19].

3. The advent of the Internet made it possible to crowd-source the curation of ever-
growing annotated and raw datasets to learn from.

Although supervised learning has been responsible for many recent achievements, mea-
suring performance using a set of minutely curated and labeled datasets may also give
us a false sense of progress. There are limits on how far we can scale supervision, and
ever-larger datasets will never suffice to cover the limitless situations that can be encoun-
tered at test-time. One could think that perception is easier in the context of autonomous
driving, due to a more limited number of distinct object classes and strong priors on their
position, but the real-world offers a wide variability. Even the a-priori simple task of
detecting stop signs turns out to be challenging when the target accuracy needs to be
as close as possible to 100%, as illustrated on Figure 1.3. As another illustration of the
variety of situations an autonomous vehicle would need to deal with in the wild, Figure
1.4 shows a number of outliers observed in the real-world data collected by Tesla cars.
The fact that labeling data by hand cannot scale forever motivates our research in both
unsupervised and semi-supervised scenarios.

Temporary Parasitic Lighting

Inactive Conditional Attached to vehicle

Occluded

Figure 1.3: Even solving the simple task of stop sign detection can prove remarkably
challenging when considering edge-cases. Images were obtained from a public presen-

tation by Tesla [Kar20a].
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Figure 1.4: Real-world cases recorded by Tesla vehicles, illustrating the long tail of
the perception problem. Toppled traffic cones on the bottom right were interpreted as
red lights before additional data was collected by Tesla to improve the system. These

images were extracted from a public video presentation [Kar20b].

1.5 Objectives & Scope

The research presented in this thesis focuses specifically on two tasks related to au-
tonomous driving: end-to-end steering and free space segmentation.

End-to-End Steering consists in creating a model that learns to steer a vehicle using
raw camera frames as its sole test-time inputs. This task can be tackled through a
form of supervised learning called imitation learning, in which a human demonstrates
optimal operation of the vehicle while synchronized camera frames and steering inputs
are recorded. Existing systems train to mimic the reactions of the demonstrator given only
camera frames. Another option would be to exploit additional knowledge, available only
at training time. This Privileged Information paradigm was first introduced by Vapnik
and Izmailov [VI15], and prompts our first research question:

Research Question 1: Can imitation learning systems for end-to-end steering benefit
from privileged information available at no additional labeling cost?

Free Space Estimation is the task of labeling each pixel from a front-facing camera as
either traversable or occupied. As a form of binary segmentation, it has traditionally been
tackled through supervised learning [OBB16]. However, a more recent work has shown
promising results using unsupervised learning, in an attempt to overcome some of the



8 Chapter 1. Introduction

limitations of supervised learning described in Section 1.4. The most successful attempts
thus far have relied on generating noisy pseudo-labels without supervision, before training
models to generalize from them [Tsu+18; MUT18]. In this thesis, we explore different
possibilities for improving the performance of these pseudo-supervised approaches, in an
effort to answer the following research questions:

Research Question 2: Can the noise present in existing free space pseudo-labels be ex-
plicitly taken into account during training in order to improve generalization?

Research Question 3: Which data augmentation strategies are most effective for pseudo-
supervised free space segmentation?

Research Question 4: Is it possible to exploit geometrical cues from approximate depth
maps to generate more accurate free space pseudo-labels?

Research Question 5: Can using a fraction of ground truth free space frames result in
substantial performance gains?

1.6 Organization & Contributions of the Thesis

The organization of the thesis is depicted on Figure 1.5. This section presents each chapter
in more details and summarizes their contributions.

Chapter 2 presents the Deep Learning background that is needed to understand subse-
quent chapters. For conciseness, it reviews only information that is immediately useful in
the context of this thesis. This chapter can be skipped by readers familiar with Convolu-
tional Neural Networks and their use for end-to-end steering and semantic segmentation.

Chapter 3 explores a novel regularization technique for end-to-end vehicle steering.
We show that privileged pixel-relevance information obtained with VisualBackProp can
be exploited during learning to benefit performances across a variety of offline metrics. We
propose Distraction Loss, a new regularization term that rewards the model for focusing
on lane markings. The proposed method relies on approximate lane information, and can
be easily and efficiently implemented. The work presented in Chapter 3 has led to an
open-source implementation, the release of our RoboBus dataset, and the following two
publications:

François Robinet, Antoine Demeules, Raphaël Frank, Georgios Varisteas, and
Christian Hundt. “Leveraging Privileged Information to Limit Distraction in

End-to-End Lane Following”. In: 2020 IEEE 17th Annual Consumer Communications
Networking Conference (CCNC). 2020, pp. 1–6. doi:

10.1109/CCNC46108.2020.9045110

https://doi.org/10.1109/CCNC46108.2020.9045110


1.6. Organization & Contributions of the Thesis 9

Georgios Varisteas, Raphaël Frank, and François Robinet. “RoboBus: A Diverse and
Cross-Border Public Transport Dataset”. In: 2021 IEEE International Conference on

Pervasive Computing and Communications Workshops. 2021, pp. 269–274. doi:
10.1109/PerComWorkshops51409.2021.9431129

Chapter 4 introduces free space estimation and our evaluation protocol. We also review
prior work that is relevant to the next chapters. Each one of these subsequent chapters
also contains additional information on relevant work specific to that chapter. Chapter 4
ends with an overview of the concepts explored in Chapters 5 to 9, and explanations on
how they fit together.

Chapter 5 presents the use of Co-Teaching to explicitly deal with pseudo-labels noise.
We adapt Co-Teaching to segmentation and illustrate its effectiveness on the particular
case of free space estimation. We also study the impact of the Co-Teaching schedule
on performances, and propose a refinement called Stochastic Co-Teaching. Our method
improves IoU results compared to standard training and traditional Co-Teaching. The
chapter ends with an analysis of the limitations of the proposed approach. Our code and
trained models are available online, and the following article was published in relation
with the work described in this chapter:

François Robinet, Claudia Parera, Christian Hundt, and Raphaël Frank.
“Weakly-Supervised Free Space Estimation Through Stochastic Co-Teaching”. In:

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV) Workshops. Jan. 2022, pp. 618–627

Chapter 6 studies the impact of data augmentation on pseudo-supervised free space
segmentation, and uses a recursive training scheme that progressively refines training
targets. We show that an appropriate use of the Cutmix augmentation strategy results
in improved results over previous efforts, gaining +2.3% in IoU, +2.4% in Precision,
and +0.4% in Recall. The limitations of our simple recursive training approach are also
discussed. The work presented in this Chapter was presented at the BeneLearn 2021
conference and published in the following journal article:

François Robinet and Raphaël Frank. “Refining Weakly-Supervised Free Space
Estimation Through Data Augmentation and Recursive Training”. In: Artificial

Intelligence and Machine Learning. Springer International Publishing, 2022, pp. 30–45.
isbn: 978-3-030-93842-0. doi: 10.1007/978-3-030-93842-0_2

Chapter 7 takes a different approach and investigates a novel free space pseudo-labels
generation technique. We rely on a pre-trained depth estimation network to compute Road
Plane Distance maps using the v-disparity algorithm. We fuse geometrical information
extracted from these maps with semantical cues obtained from over-segmenting the RGB

https://doi.org/10.1109/PerComWorkshops51409.2021.9431129
https://doi.org/10.1007/978-3-030-93842-0_2
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input into superpixels in order to obtain pseudo-labels. Unlike prior work, this method
does not require the use of stereo-pairs, but still reaches state-of-the-art results.

Chapter 8 builds on the results of Chapter 7 to offer a practical alternative to unsuper-
vised free space estimation. We combine RPD maps with feature maps extracted from a
pre-trained depth estimation model, and use them to train a pseudo-label generator with
minimal supervision. We show that this method can greatly improve over completely
unsupervised approaches, even when using as little as 1% of labeled data, which corre-
sponds to only 29 annotated frames. The results presented in Chapters 7 and 8 have been
accepted for publication in the IEEE Robotics and Automation Letters journal (RA-L),
and for presentation at the IROS 2022 conference.

François Robinet, Yussef Akl, Kaleem Ullah, Farzad Nozarian, Christian Müller, and
Raphaël Frank. “Striving for Less: Minimally-Supervised Pseudo-Label Generation for
Monocular Road Segmentation”. In: IEEE Robotics and Automation Letters (2022),

pp. 1–7. doi: 10.1109/LRA.2022.3193463

https://doi.org/10.1109/LRA.2022.3193463
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Chapter 2: Deep Learning Background
Reviews the concepts of Deep Learning necessary to understand subsequent chapters

Chapter 3: Enhancing End-to-End Steering with Privileged Information
Explores how CNNs can learn to steer a vehicle from human demonstrations, and how that 
process can be improved with a distraction loss if approximate lane information is available.

Part 1: Supervised Learning with Privileged Information

Part 2: Unsupervised Learning for Free Space Estimation

Chapter 4: Background on Learning-Based Free Space Estimation
Presents the task of free space estimation and our evaluation procedure. Also reviews prior 
results relevant to subsequent chapters, and outlines how these chapters fit together.

Chapter 5: Free Space Estimation through Stochastic Co-Teaching
Proposes Stochastic Co-Teaching as a new method to deal with pseudo-label noise.

Chapter 6: Data Augmentation and Self-Training for Free Space Estimation
Explores different data augmentation schemes for FSE, as well as the effect of self-training.

Chapter 7: Improving Pseudo-labels Generation for Free Space Estimation
Proposes a novel technique to generate free space pseudo-labels, combining approximate 
depth information with superpixel segmentation.

Chapter 9: Conclusion

Chapter 1: Introduction

Part 3: Semi-Supervised Free Space Estimation

Chapter 8: Minimally-Supervised Pseudo-labels for Free Space Estimation
Builds on the pseudo-labels generation from Chapter 7 with the use of superpixel-level 
feature extraction and a restricted subset of labeled data at training time. This further 
improves results while containing labeling costs.

Figure 1.5: Organization of the thesis.
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Part I

Supervised Learning with Privileged
Information
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Chapter 2

Deep Learning Background

This chapter provides the Deep Learning background required to follow subsequent chap-
ters. It is included in this dissertation to make it self-contained, and is meant to be a
condensed introduction to the material. The chapter can be skipped entirely by readers
familiar with the use of Convolutional Neural Network (CNN) for regression and image
segmentation.

2.1 Parametric Learning for Image Understanding

Parametric conditional distribution learning is the most common way to approach predic-
tions problem where a prediction has to be made from one or more input images. Many
image understanding problems can be framed as learning the conditional distribution of

a random variable Y given X. We denote this distribution p(y |x) def
= P (Y = y |X = x).

In this context, the goal of parametric learning is to model p(y |x) as a function f(x;w)
parametrized by a set of weights w usually represented as a real-valued vector w ∈ Rm.

As a concrete example, consider the problem of image classification depicted on Figure
2.1, where an input image has to be associated with one of C predefined classes. In this
setting, X consists of RGB pixel values x ∈ R3×H×W for some image height H and width
W , while y ∈ [0, 1]C is the predicted probability of the input image belonging to each
class. Note that this formulation is very general and applies to many image understanding
problems, including the ones treated in this dissertation. Steering angle regression and
free space segmentation can be modeled by simply changing the definition of y and using
an appropriate model f(x;w).

2.2 Convolutional Neural Networks

As discussed in Section 1.3, the main challenge of learning-based image understanding
is to transform raw pixel values into rich semantic representations. To tackle this prob-
lem, researchers have first directed their efforts to manually designing feature extractors
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Figure 2.1: Toy example for image classification, illustrating parametric conditional distribu-
tion learning.

capable of capturing some semantic concepts, such as Histogram of Oriented Gradients
(HoG) [DT05], Scale Invariant Feature Transform (SIFT) [Low99], or Speeded Up Robust
Features (SURF) [BTVG06]. Rather than focusing on manual feature engineering, efforts
in the last decade have turned to learning these automatically, by relying on an operation
called ”convolution”.

2.2.1 The Convolution Operation

The 2-dimensional convolution operation consists in sliding (“convolving”) a 3-dimensional
tensor k of dimensions (KH , KW , Cin) over an input x of dimensions (H,W,Cin). The con-
volved tensor is usually referred to as a “kernel”. The spatial dimensions H and W of x
are usually much larger than the kernel height and width (KH , KW ), but the number of
channels Cin (the depth) must be identical. For every spatial position of k over x, a dot
product is computed between k and the subtensor of x at that position. This results in
the construction of a feature map f , as illustrated on Figure 2.2a.

f(i, j) = x(i:i+KH , j:j +KW )T · k (2.1)

The convolution operation has many variants. The most common ones are the addition
of padding on the input, and the use of a stride, i.e. the distance between each kernel
positions. Figure 2.2b displays an example of padding and stride being used. Given an
input of spatial shape (H,W ), a kernel of spatial shape (KH , KW ), a total padding of P
and a stride of S, the feature map resulting from convolving the kernel over the input has
a spatial shape (FH , FW ) given by Equation 2.2.

FH =

⌊
H −KH − P

S

⌋
+ 1, FW =

⌊
W −KW − P

S

⌋
+ 1 (2.2)
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(a) 3× 3 kernel, no padding, stride 1.
(b) 3× 3 kernel, padding,

stride 2.

Figure 2.2: Visualization of the convolution operation. The input is depicted in light
blue, the kernel as a shade over the input, and the output feature map is represented

in green. Images by Dumoulin and Visin under MIT license [DV16].

Note that the operation presented here and referred to as “convolution” by the com-
puter vision community is in fact more precisely named “cross-correlation” as it is not
strictly equivalent to the mathematical definition of the convolution [GBC16]. We will
nevertheless follow the literature and refer to it as convolution.

Computing feature maps using Equation 2.1 produces interesting results for particular
values of the kernel. Some examples are illustrated on Figure 2.3. The convolution
operation allows to compute many interesting feature maps depending on the values of
the kernel. Rather than attempting to manually identify and compose relevant kernels
for each application, CNNs aim to treat the kernel values as learnable model parameters.

2.2.2 The Convolutional Layer

Since convolution kernels can be seen as learned feature extractors, it is natural to use
them as part of a building block for deep network design. A single convolutional layer
consists of an arbitrary number of kernels of the same size that are independently con-
volved over the input. The resulting feature maps are stacked, producing a feature maps
tensor of shape (Cout, FH , FW ) where Cout is the number of kernels in the layer, and FH

and FW are computed using Equation 2.2. A bias term is then added to each output.
This process is illustrated on Figure 2.4.

Because convolution is a linear operator, stacking convolutional layers (without bias)
can only result in a linear transformation. For this reason, non-linear activation functions
are traditionally used after each convolution. The most popular choices for hidden layers
include the Rectified Linear Unit (ReLU), the hyperbolic tangent (tanh), the Exponential
Linear Unit (ELU), or the Sigmoid Linear Unit (SiLU). These activation functions are
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Figure 2.3: Feature maps obtained by convolving different 3 × 3 kernels over the
same input image.

depicted on Figure 2.5. An activation can also be present on the final layer of a network,
usually to scale the output to some known range or to normalize its components. The
softmax function is commonly used for this purpose in classification or segmentation
problems:

softmax(z)i =
ezi∑
j e

zj
(2.3)

2.2.3 Assembling Convolutions: PilotNet

As an example of how convolutional layers can be assembled into a deep network, we will
examine the PilotNet architecture. PilotNet has been proposed to tackle the end-to-end
vehicle steering problem [Boj+16]. The problem consists in learning to predict human-like
steering angles from road-facing camera frames. The PilotNet architecture is illustrated
on Figure 2.6. A series of five convolutional layers is followed by three fully-connected
layers, in order to compute the steering angle output. A more in-depth treatment of
end-to-end steering will be the topic of Chapter 3.
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Figure 2.4: The convolutional layer, the basic building block of CNNs.

2.3 Loss Functions

In the context of supervised learning, learning is done using a training dataset Dtrain ={
(x(0), y(0)), . . . , (x(n), y(n))

}
. The samples of Dtrain are assumed to be independently

drawn from the data distribution p(x, y). The expected performance of the trained model
on p(x, y) can be approximated after training using a separate, independently drawn test
dataset Dtest.

In order to select the best parameters w for a given task, we must define a criterion for
evaluating a set of parameters during training. This is done by choosing a loss function L,
comparing the expected outputs with the predicted outputs. Ideally, we should select the
best parameter values w∗ by minimizing the expected value of L over the true data
distribution p(x, y).

w∗ = argmin
w∈Rm

E(x,y)∼p L (y, f (x;w)) (2.4)

Since the underlying data distribution is unknown, we actually minimize the empir-
ical loss computed from the training dataset Dtrain, assuming the training samples were
independently drawn.

w∗ = argmin
w∈Rm

E(x,y)∈Dtrain
L (y, f (x;w)) = argmin

w∈Rm

n∏
i=0

L
(
y(i), f

(
x(i);w

))
(2.5)
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Figure 2.5: Common activation functions in hidden layers.

2.3.1 Classification Losses

The choice of the per-sample loss function depends on the application, and is also guided
by optimization principles. We will consider classification problems first. In theory, one
may want to optimize directly for accuracy, by using a 0-1 loss, which equals zero when
the prediction is correct and one otherwise. Optimizing such a 0-1 loss is however NP-hard
[NS13], and thus intractable in the context of deep learning, where millions of parameters
often have to be learned. The most popular loss for classification problems can be derived
by applying the principles of Maximum Likelihood Estimation (MLE). MLE optimizes
the weights in order to maximize the likelihood that the model generates the observed
data [GBC16]. Using pm(y |x;w) to denote the probability that a model with weights w
assigns to class y given input x, we can write
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Figure 2.6: The PilotNet architecture.

w∗ = argmax
w∈Rm

pm
(
y(0), . . . , y(n) |x(0), . . . , x(n);w

)
= argmax

w∈Rm

n∏
i=0

pm
(
y(i) |x(i);w

)
= argmax

w∈Rm

n∑
i=0

log pm
(
y(i) |x(i);w

)
w∗ = argmin

w∈Rm

−
n∑

i=0

log pm
(
y(i) |x(i);w

)
(2.6)

Minimizing the right-hand term from Equation 2.6 is equivalent to minimizing the
cross-entropy between the training data distribution and pm, which is why this loss is
often referred to as the “cross-entropy loss” [GBC16].

2.3.2 Regression Losses

For regression problems, such as the end-to-end steering task described in Chapter 3, two
common losses are the Mean Absolute Error (MAE) and Mean Squared Error (MSE).
These two losses are also referred to as L1 and L2 losses and are respectively computed
using Equations 2.7 and 2.8.
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w∗ =
n∑

i=0

∣∣∣∣f(x(i);w)− y(i)
∣∣∣∣
1

(2.7)

w∗ =
n∑

i=0

∣∣∣∣f(x(i);w)− y(i)
∣∣∣∣2
2

(2.8)

2.4 Learning Parameters

The commonly used losses and layers, including the ones presented in the previous sec-
tions, are (sub-)differentiable. This means that we can leverage gradient-based optimiza-
tion techniques to search for w∗. In its simplest form, Gradient Descent (GD) iteratively
optimizes an estimate of the weights starting from an initial guess w(0) and following the
direction of steepest descent opposite to the gradient.

w(k) = w(k−1) − η

n

n∑
i=0

∂L

∂w

(
f(x(i);w), y(i)

)
(2.9)

The value of η is a hyper-parameter called the learning rate, and controls the mag-
nitude of each optimization step. Computing each iteration of Equation 2.9 requires to
evaluate the loss gradient over every sample of the training data, which makes it slow
when working with large datasets. Note that since our objective is the minimization of
the loss function on the underlying data distribution and not the training set, the gra-
dients of Equation 2.9 are only approximations. One way to speed up the computation
is therefore to replace the training set gradient by a gradient computed on a smaller
“batch” of training samples. This leads to Stochastic Gradient Descent (SGD), which
uses a random batch of training data B ⊆ Dtrain at every iteration.

w(k) = w(k−1) − η

|B|
∑

(x,y)∈B

∂L

∂w
(f(x;w), y) (2.10)

Many refinements to SGD have been proposed over the years, including the popular
Adaptive Moment Estimation (Adam) [KB15]. The main goal of these refinements is to
automatically adjust the learning rate η during training, by incorporating loss-landscape
information collected over the previous iterations.
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2.5 The U-Net Architecture for Image Segmentation

As a segmentation task, supervised free space estimation has directly benefited from
progress in semantic segmentation. Pixel-level prediction carries a crucial challenge for
network design: an optimal prediction can only be achieved by combining fine-grained
local information with global contextual cues.

Some architectures, such as Fully Convolutional Networks (FCNs) carry these cues
in their encoder-decoder architectures [LSD15]. Building on a similar idea, the U-Net
architecture combines entire encoder feature maps with decoder features at each step of
the expansion path of the network [RFB15]. This is illustrated on Figure 2.7.

U-Nets have attracted a lot of attention in recent years, and researchers have pro-
posed refinements such as the use of dense connections [Jég+17] and dilated convolu-
tions [Zha+17], the integration of attention mechanisms [Okt+18], or extensions to vol-
umetric images [MNA16]. In subsequent chapters, we will rely on a simple U-Net ar-
chitecture. Our choice is motivated by a recent finding that many recent architecture
improvements are outperformed by a well-tuned vanilla U-Net [Ise+18].

Input 
Image

Output 
Segmentation

Downsample

Concat and Crop

Conv 3x3, ReLU

Upsample

Conv 1x1

Figure 2.7: An example of the U-Net Architecture, reproduced from [RFB15]. Fea-
ture maps are gradually downsampled along the encoder path (left) and the decoder

path (right) gradually upsamples encoded features.
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Chapter 3

Enhancing End-to-End Steering with
Privileged Information

3.1 Introduction

In recent years, imitation learning has successfully been applied to learn complex control
skills directly from sensor data. One application is end-to-end steering, where steering
angles are learned from road facing camera frames recorded during human expert demon-
strations [Boj+16]. At the same time, different methods have emerged to visualize how
neural networks learn embeddings and make decisions. In particular, a class of these vi-
sualization methods generates heatmaps identifying which input pixels are most relevant
to determine the output of the model [Bin+16; Boj+18].

In this chapter, we show that pixel-relevance heatmaps for Convolutional Neural Net-
works (CNNs) can be leveraged during training to improve end-to-end lane following. To
achieve this, we propose an ad-hoc loss function that improves the trained model without
incurring any noticeable computational overhead. Our loss function includes a regularizer
that encourages the model to focus on road markings, which we assume to be relevant
for the lane following task. In relation to this work, we also publicly release the RoboBus
dataset, which consists of extensive driving data recorded using a commercial bus on a
cross-border public transport route at the Luxembourgish-French border.

The work presented in this chapter is based on the following publications:

François Robinet, Antoine Demeules, Raphaël Frank, Georgios Varisteas, and
Christian Hundt. “Leveraging Privileged Information to Limit Distraction in

End-to-End Lane Following”. In: 2020 IEEE 17th Annual Consumer Communications
Networking Conference (CCNC). 2020, pp. 1–6. doi:

10.1109/CCNC46108.2020.9045110

Georgios Varisteas, Raphaël Frank, and François Robinet. “RoboBus: A Diverse and
Cross-Border Public Transport Dataset”. In: 2021 IEEE International Conference on

Pervasive Computing and Communications Workshops. 2021, pp. 269–274. doi:
10.1109/PerComWorkshops51409.2021.9431129

https://doi.org/10.1109/CCNC46108.2020.9045110
https://doi.org/10.1109/PerComWorkshops51409.2021.9431129
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3.2 Related Work

End-to-end control systems based on neural networks have been proposed in the past.
The first attempt, named ALVINN (Autonomous Land Vehicle In a Neural Network) was
published three decades ago [Pom89]. The system consisted of a 3-layer back-propagation
network designed for the task of lane following. Although it used a simplistic network
architecture, and a relatively small synthetic training set, ALVINN was able to accurately
drive a path of 400 meters at a speed of half a meter per second.

It took 15 years further until another groundwork relying on the same principles was
proposed as part of a DARPA challenge. The project, known as DAVE (DARPA Au-
tonomous Vehicle) [LeC+05], was built around a small-scale radio-controlled car equipped
with two cameras. The training set included hours of video data and the steering com-
mands of a human operator. The trained CNN model was able to successfully navigate
the vehicle through a previously unseen open terrain while avoiding obstacles.

With the advent of deep learning and large-scale parallel accelerators, the approach
has recently been revisited by researchers from NVIDIA [Boj+16]. The system, dubbed
PilotNet, employs three cameras and a steering angle recorder to generate a training
set from human demonstration. The training data is fed to a deep CNN in order to
obtain a model that predicts the correct steering angle from solely one input image. They
empirically demonstrate that the CNN is able to learn the task of lane and road following
without manual decomposition into human crafted features such as roads or lanes.

In a recent work, we successfully reproduced the results of the NVIDIA paper with
our own experimental platform [Var+19]. We made use of the VisualBackProp method
[Boj+18] to highlight pixel regions in the input image that contribute most to the predic-
tion of the CNN. We concluded that the network tends to independently learn features
such as road boundaries and lanes markings, but vast amounts of diverse data are needed
in order to capture changing light and weather conditions that severely impact the per-
formance of the model.

Another approach to implement an autonomous driving software stack is to initially
understand the traffic scene before computing the control signals. This is typically
achieved by extracting semantics from the raw pixels to detect lanes, traffic signs and
other vehicles [Nev+18; Tei+16]. This information is then used by a trajectory planner
to compute the low-level control signals.

The idea of this work is to take advantage of the spatial information obtained through
semantic segmentation to improve the performance of an end-to-end lane following model.
This approach is inspired by the work of Bisla and Choromanska [BC18], who specified
a methodology for incorporating privileged information, such as available segmentation
masks along with classification labels, into the training stage of a CNN. They rely on the
VisualBackProp technique [Boj+18] to guide the network towards specific parts of the
input image when forming the prediction. They tested the performance of their approach
to classify dermoscopic images to detect skin lesions. Empirically, they find that their
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method outperforms common baselines on a variety of learning problems. The use of
additional knowledge, available only at training time, is described by the Learning Under
Privileged Information (LUPI) paradigm, introduced by Vapnik and Izmailov [VI15].

We apply a similar methodology to enhance the performance of an end-to-end lane
following network by incorporating privileged information about the lane geometry to
improve the learning process. To the best of our knowledge, such an approach has never
been applied in this context before.

We also publicly release our RoboBus dataset, which includes extensive driving data
recorded by a public transport bus over four days on a trip at the border between Luxem-
bourg and France. The 8 hours of driving data are divided into 15 trips and include over
1.7 million anonymized images captured by two road-facing cameras, as well as GNSS
traces for precise localization, 9-axis IMU measurements, and diagnostics data extracted
from the CAN interface. This CAN data includes speed, steering angle, and position of
the acceleration and brake pedals, which are important factors for understanding driver
intent. The complete dataset size reaches 67GB and is available for download on GitHub
[Rob].

3.3 Methodology

Our method attempts to guide the training process by imposing the prior belief that a
good lane keeping model should focus a major fraction of its attention on lane markings.
To model this prior, we propose a new loss function, which we coin Distraction Loss D.

D(H,M) = 1− ||H ⊙M ||1
||H||1

. (3.1)

In Equation 3.1, H denotes a relevance heatmap obtained using VisualBackProp
[Boj+18], M is the ground truth lane marking binary segmentation mask, and ⊙ stands
for the component-wise product (also known as the Hadamard product). The numerator
of the quotient represents the L1-norm of the intersection between the relevance heatmap
and the lane markings. The Distraction Loss is thus measuring the fraction of the model
focus that is spent outside of lane markings.

Our model is trained using a joint loss that balances the standard Mean Squared Error
(MSE) on predicted steering angles with a Distraction Loss term acting as a regularizer.

L = ||ŷ − y||22 + λD(H,M). (3.2)

Because M ∈ {0, 1}h×w, the distraction loss has the useful property of being bounded
to [0, 1], which allows complete control over the magnitude of the regularization term by
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tuning λ ∈ R+. Note that setting λ = 0 disables any distraction penalty.

Although the Distraction Loss expression from 3.1 closely resembles the traditional
Intersection over Union metric (IoU), it does not have the effect of forcing the model to
spread its focus over the whole lane markings. We argue that such penalty would be
unnecessarily restrictive in the context of lane following, because small fractions of lane
markings carry enough visual cues to understand the shape of the whole lane. On the
other hand, in the presence of high λ values, the model might overfit the regularizing
term by focusing on very small parts of the ground truth lanes. The results presented in
Section 3.5 show that this can indeed happen in practice.

VisualBackProp has been mathematically proven to appropriately estimate pixel rele-
vance in the general case of convolutional networks [Boj+18]. Although it can be extended
for networks that include residual connections [BC18; He+16], this work focuses on the
regularization process and therefore relies on a traditional architecture. In particular, we
chose to reproduce the PilotNet architecture [Boj+16].

The implementation of VisualBackProp is illustrated on Figure 3.1. Given that all
its operations are differentiable and use constant weights, this method can be embedded
in our architecture without adding any trainable weights or noticeable computational
overhead.

Figure 3.2 presents an overview of the complete architecture. During training, a for-
ward pass proceeds as follows: a batch of camera frames is fed through a sequence of
convolutional layers to generate stacks of feature maps. The feature maps of the last lay-
ers are forwarded through a sequence of dense layers to predict the steering angle. In the
second branch of the network, all convolutional feature maps are used by VisualBackProp
to generate heatmaps H. These heatmaps highlight the pixels which are most relevant
to the network’s learned representation. The joint loss is then computed as described in
Equation 3.2. During backpropagation, the gradient flows through both the VisualBack-
Prop and angle prediction branches. The learned representation of the model is therefore
adjusted to increase focus on lane markings while correctly predicting steering angles.
Since VisualBackProp does not add any trainable parameters to the model, it acts as a
constant operation with respect to the computation of the gradient. Moreover, generating
the pixel-relevance heatmaps during the same forward pass as the steering angles allows
for a computationally efficient training procedure.

Under the LUPI framework, we are only using relevance heatmaps to guide the learning
process. They can be discarded once training is over. During inference, this shrinks the
model to only the first row of Figure 3.2.
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Figure 3.1: The VisualBackProp method for generating pixel relevance heatmaps
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3.4 Experimental Setup

3.4.1 Dataset

We collected data on Luxembourgish highways using an off-the-shelf RGB camera mounted
at the front of our experimental vehicle, recording in 720× 1280 resolution at 30 frames
per second. The recording occurred over multiple days to capture a broad variety of
daytime weather conditions as well as different road portions, spanning a total of 2 hours
of driving. The ground truth steering angles were also read at 30 Hz from the vehicle’s
CAN bus. In the context of our lane following experiment, the recorded data contains no
lane changes, but does include curvy road sections as well as highway exits.

In order to include the distraction loss term from Equation 3.1 into the loss, ground
truth lane marking segmentation is required. In the absence of annotated lanes in our
dataset, we used a LaneNet model that was pre-trained on the TuSimple dataset [Nev+18;
Tus]. This yielded visually accurate lane masks on our data. The results from Section 3.5
show that the training process can extract useful information even from such imperfect
lane marking ground truth.

In the machine learning literature, test data is commonly obtained by uniformly sam-
pling a fraction of the available data. However, in the case of end-to-end steering, there
exists a high correlation between temporally close frames. Using the classical sampling
strategy would leak information from the training set into the test set, and yield a poor
estimate of the true capabilities of trained models. Instead, we form a test set by selecting
whole stretches of highways never seen in the training data, accounting for 20% of the
total data. The test clips are selected randomly while ensuring that the steering angle
distribution stays similar to the one from the training data.

The preprocessing steps are straightforward. Similarly to the original PilotNet, the
top 150 pixels corresponding to the sky are cropped. Input frames are then normalized
and the result is resized using Lanczos interpolation [Duc79], producing a final 66x200
input resolution.

3.4.2 Evaluation

The evaluation of end-to-end steering models is a complex open problem. Ideally, these
models should be evaluated in the real-world by running them in one or more test vehicles.
In this online evaluation context, several performance metrics have been proposed, such
as the fraction of time that the model is able to safely and autonomously steer the vehicle,
or the average time between human interventions [Boj+16; Cod+18].

However, online evaluation schemes are often not practical for academic labs, which
have to resort to evaluating models offline, using an annotated test dataset collected in
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Name Per Sample Expression

Mean Squared Error (ŷi − yi)
2

Absolute Error |ŷi − yi|

Quantized Classification Error 1− δ (Qσ(ŷi)), Qσ(yi))

Table 3.1: Per sample arithmetic expressions for the metrics used to evaluate our
models on the test set. A prediction is denoted with ŷi, Qσ is a quantization function
and δ(i, j) = 1ij is Kronecker’s delta. A precise definition of Qσ is given in the text.

conditions similar to the training set. Models are usually trained by minimizing the MSE
of steering angle predictions, but can be evaluated using other metrics. Codevilla et al.
have proposed different options and used the CARLA simulator [Dos+17] to show that
some of them correlate better with online driving abilities than the angle MSE [Cod+18].

The metrics used to evaluate our models are presented in Table 3.1. Evaluating with
MSE is known to overemphasize outliers since it heavily penalizes the largest errors com-
pared to the absolute error. The quantized classification error introduces the idea that
driving performances do not really depend on exactly predicting the steering angle. In-
stead, it is more important to predict the general direction correctly. Using a threshold σ,
a quantization function Qσ classifies steering angles as going left, right or straight. The
classification error is then computed using the quantized angle classes and subsequently
used to measure the model’s abilities.

Qσ(x) =


1 if x > σ (right)

0 if − σ ≤ x ≤ σ (straight)

−1 if x < −σ (left)

3.5 Results

We train many models to minimize the joint loss introduced in Equation 3.2. The training
is run over 70 epochs on batches of 256 examples, using the Adam optimizer [KB15]. The
learning rate is initially set to 0.001 and decayed to 0.0005 after 40 epochs. In order to
account for the stochasticity of the learning process, 20 independent training runs are
considered for each value of λ. Let Mi

λ denote the ith model trained with regularization
coefficient λ. For any given training run i ∈ {0, ..., 20}, all models Mi

λ are trained on
the same batches of data in the same order. Note that we present results obtained for
different arbitrary values of λ, without tuning it to the test set. Determining an optimal
value for λ and its expected generalization error would
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Error Type mean std best run

Mean Squared Error

λ = 0 0.3961 0.0228 0.3503

λ = 1 0.3494 0.0218 0.3221

λ = 5 0.3331 0.0228 0.2920

λ = 25 0.4741 0.0339 0.4283

Mean Absolute Error

λ = 0 0.4431 0.0249 0.3987

λ = 1 0.4111 0.0103 0.3945

λ = 5 0.3966 0.0109 0.3769

λ = 25 0.4956 0.0196 0.4752

Quantized Classification Error

λ = 0 0.1853 0.0097 0.1694

λ = 1 0.1676 0.0061 0.1538

λ = 5 0.1634 0.0067 0.1519

λ = 25 0.1927 0.0117 0.1735

Table 3.2: Aggregated test results for each metric and different regularization
strengths. For each value of λ, 20 models are trained over 70 epochs to minimize

Equation 3.2.

In Figure 3.3, we investigate the effect of increasing λ on the Distraction Loss D.
Unsurprisingly, larger λ values result in a steeper decrease of D. Interestingly, D settles
to the same range of values for all λ > 0. This indicates that all models eventually prefer
to pay the cost of sometimes looking outside of lane markings in order to further decrease
their steering errors.

Table 3.2 presents statistics of the performance distributions obtained for all trained
models Mi

λ. Using the joint loss with reasonable λ values yields performance improve-
ments on average, but also results in the best models overall. Guiding the training with
lane geometry information also benefits the stability of the learning process, as shown by
smaller standard deviations across different runs.

Lastly, Figure 3.4 illustrates the impact of tweaking λ on both VisualBackProp heatmaps
and predicted steering angles. Note that lane markings emerge as relatively prominent
centers of attention even when λ = 0. This result was already observed by Bojarski et al.
[Boj+17]. As expected, increasing λ results in models placing a sharper focus on these
regions of the input. Although this can help models to avoid distractions such as over-
taking vehicles, λ values that are too high also end up increasing steering errors. This is
the case in the second and third rows of the figure, where |∆y| grows larger when λ = 10.
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Figure 3.3: Training learning curves for the Distraction Loss term from Equation 3.2.
Each experiment is run 20 times for each value of λ and mean curves are reported.

y = -0.6 | y|=1.17, D=0.92 | y|=0.15, D=0.49 | y|=0.10, D=0.24

y = -0.6 | y|=0.50, D=0.92 | y|=0.00, D=0.54 | y|=0.29, D=0.34

y = -0.2 | y|=0.98, D=0.91 | y|=0.00, D=0.29 | y|=0.31, D=0.18

Figure 3.4: Relevance heatmaps obtained for selected input frames and for different
values of λ. The leftmost column shows the rescaled input that is fed to the model,
and the three columns to its right respectively correspond to λ = 0, λ = 5 and λ = 10.
For each input and λ values, the absolute angle prediction error |∆y| and the value of

the Distraction Loss D are reported.
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3.6 Conclusion

In this work, we have shown that privileged pixel-relevance information can be exploited
during learning to benefit performances across a variety of offline metrics. The additional
knowledge available during training doesn’t need to be perfectly accurate to provide useful
insights. In our case, lane marking ground truth was approximated using a pre-trained
network without fine-tuning. The proposed method can be easily and efficiently imple-
mented, without adding any learnable parameter to the architecture. Our approach was
tested with real-world data and improves on the offline metrics that have the highest
correlations with real-world driving performance. We leave the investigation of actual
steering capabilities and the extension to larger datasets to future work.
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Part II

Unsupervised Learning for Free
Space Estimation
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Chapter 4

Background on Learning-Based Free
Space Estimation

This chapter serves as an introduction to Part II. In Section 4.1, we introduce the task
of free space estimation in the context of perception for autonomous vehicles. Existing
learning-based approaches using different degrees of ground truth supervision are reviewed
in Section 4.2. Section 4.3 details Superpixel Clustering, an existing pseudo-labeling
technique that will be used in Chapters 5 and 6. The evaluation procedure that will be
followed in Chapters 5 to 8 is detailed in Section 4.4, and results for existing work and
baselines are reported in Section 4.5. Finally, Section 4.6 concludes this chapter with an
overview of Chapters 5 to 8.

4.1 Introduction

Autonomous navigation is one of the key problems in modern robotics. Before being
able to safely plan and execute its motion, an autonomous vehicle should perceive its
environment and identify drivable free space in an accurate manner. In this context,
free space can be defined as road surfaces that are not occupied by other objects such
as vehicles, traffic signs, road dividers or pedestrians [Jan+20]. Since collision avoidance
requires a fine-grained understanding of the scene, our work aims to classify every pixel
as belonging to either free space or occupied space. This task is commonly referred to as
Free Space Estimation (FSE).

In this thesis, we focus our attention on systems using only a single road-facing camera.
Although free space segmentation can be approached using classical supervised seman-
tic segmentation techniques, they require large quantities of annotated images. While
bounding-boxes for object detection can be relatively cheap to obtain, studies have shown
that pixel-level annotations are significantly more time consuming [Lin+14]. In addition
to the 1.5 hour labor cost associated with labeling every pixel in a single frame [Cor+15],
a wide variety of environmental and weather conditions need to be captured. This cre-
ates a need for very large datasets, and renders fully-supervised semantic segmentation
solutions impractical. This motivates more recent approaches that focus on unsupervised,
pseudo-supervised or semi-supervised learning techniques.
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4.2 Related Work on Free Space Estimation

The work presented in this document builds mainly on recent advances in network ar-
chitectures for segmentation, and on pseudo-supervised techniques for generic semantic
segmentation or specific to free space estimation. In this section, we present an overview
of the landscape of free space estimation techniques, examining techniques that use dif-
ferent sensors or varying degrees of supervision. Each subsequent chapter also includes
details on prior work specific to the ideas presented in that particular chapter.

Over the last decades, free space estimation has been approached with methods
that leverage a wide variety of sensors, e.g. GNSS [Lad+16], LiDAR [Xia+15] or cam-
eras [OBB16]. In this thesis, we place a particular focus on recent camera-based learning
methods that use Convolutional Neural Networks.

4.2.1 Supervised Learning for Free Space Estimation

Varied Representations Supervised monocular free space estimation has been ap-
proached in many different ways that differ in the representation they use. A popular
representation is the stixel world, which approximates the ground plane and represents
obstacles as vertical sticks [BFP09; Cor+17], but ignores free space lying behind obsta-
cles. Another possibility is to represent free space as a single horizontal curve lying on
the ground plane [Yao+15]. These approaches are however not directly comparable to
our work, since they do not annotate attempt to label every pixel.

Supervised Segmentation When framed as a pixel segmentation task, supervised free
space estimation has directly benefited from progress in semantic segmentation. Pixel-
level prediction carries a crucial challenge for network design: an optimal prediction
can only be achieved by combining fine-grained local information with global contextual
cues. Fully Convolutional Networks rely on skip connections to carry these cues in their
encoder-decoder architecture [LSD15], while SegNets ease the upsampling task by reusing
encoder max-pooling indices in the decoder [BKC17]. Building on similar ideas, U-Nets
combine entire encoder feature maps with decoder features at each step of the expan-
sion path of the network [RFB15]. The basic U-Net architecture, which we described in
more details in Section 2.5, has attracted a lot of attention in recent years. Researchers
have proposed refinements such as the use of dense connections [Jég+17] and dilated con-
volutions [Zha+17], the integration of attention mechanisms [Okt+18], or extensions to
volumetric images [MNA16]. Interestingly, recent work has shown that many proposed U-
Net architecture improvements are outperformed by a well-tuned vanilla U-Net [Ise+18],
motivating our adoption of a vanilla U-Net architecture in our own work.
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4.2.2 Unsupervised Free Space Segmentation

The efficiency of deep networks for free space segmentation has already been demonstrated
in the fully-supervised context [OBB16]. One major drawback of these techniques is their
reliance on extensive human-annotated datasets. The cost of labeling is particularly
important in segmentation tasks, where the total time required to annotate every pixel
in a single frame can reach 1.5 hours in some cases [Cor+15]. The reuse of models
pre-trained on very large datasets such as ImageNet [Den+09] partially alleviates this
problem, but several thousands of training images are still routinely needed to reach
adequate performance. In recent years, researchers have devised strategies to reduce or
eliminate the need for human annotations during training.

Synthetic Data In the complete absence of pixel-wise ground truth labels, researchers
have proposed to use domain adaptation to transfer knowledge gained from synthetic
datasets to the real-world [Hof+16; Che+19b]. Domain adaptation consists in reducing
the drop in performance observed when the training and test distributions differ sig-
nificantly, which is the case when training on synthetic data and running inference on
real-world images. For a comprehensive overview of this topic, we refer the reader to the
survey in [Csu17].

Weakly-Supervised Segmentation When obtaining pixel-level ground truth is not
an option, existing techniques rely on coarser labels that can be annotated much faster.
Examples include supervision derived from bounding boxes [DHS15; Ker+20; Kho+17;
Xie+20], image-level labels [PC15; Dur+17; TSK17], class activation maps [Cha+20],
single points [Bea+16], or scribbles [Lin+16].

Pseudo-Supervised Segmentation Our work presented in Part II explores another
avenue: we learn dense free space from single images using approximate masks that can
be generated without requiring any supervision. One way of generating such pseudo-labels
is to obtain depth information from stereo pairs and to extract a ground plane estimate,
often using the v-disparity algorithm [LAT02; HAS16; MUT18]. Another possibility is
to exploit strong road texture and location priors, by dividing the input into superpixels
and clustering them based on saliency maps [TSK17] or semantic features [OBB16]. We
stress that relying on pseudo-labels differs from approaches based on coarse labels as in
pseudo-supervised learning, since the generated masks contain both false positives and
false negatives. Indeed, bounding-boxes contain no false negative, and scribble or point
supervisions do not include any false positive. Additional information on how the training
strategy can be adapted to take pseudo-label noise into account is available in Section
5.2, and Chapter 6 covers data augmentation and self-training approaches.
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4.2.3 Semi-Supervised Free Space Segmentation

Cases where fine-grained annotations are available for only a subset of the data fall in
the realm of semi-supervised learning. Two main categories of approaches have emerged
for semi-supervised learning in segmentation problems: consistency regularization and
pseudo-labeling.

Consistency regularization builds on the concept that learned representations should
be similar in some way for different perturbations of the same input. Since perturbing a
given input does not require supervision, this idea can be used to learn robust represen-
tations on unlabeled data, which can then be fine-tuned using a small sample of labeled
data [Zbo+21; Che+20b; Xie+19; Miy+17; Yun+19].

Pseudo-labeling takes the opposite route: a model is trained on the labeled data, and
is then used to generate approximate pseudo-labels for the unlabeled data. A model can
then be trained on the whole dataset, using both ground truth labels and pseudo-labels
[Tsu+18; MUT18; Che+20a; Hoy+21; TV17; Rob+22a].

A more thorough introduction to these techniques is presented in Section 8.2.

4.3 Pseudo-labeling with Superpixel Clustering

This section gives an overview of the Superpixel Clustering approach introduced by Tsut-
sui et al. in order to generate free space pseudo-labels. We rely on this technique to
generate the pseudo-labels used in Chapters 5 and 6.

The method can be summarized in three steps, illustrated on Figure 4.1:

1. Superpixel Segmentation: Pixels in the frame are grouped into superpixels based on
their location and RGB values.

2. Superpixel Features Extraction: A single feature vector is computed for each super-
pixel.

3. Superpixel Clustering : Superpixels are clustered based on their feature vectors and
a cluster is selected to represent the road.

4.3.1 Superpixel Segmentation

Similar color-space regions are aggregated into superpixels using the graph-based seg-
mentation algorithm from Felzenszwalb and Huttenlocher [FH04]. This produces a rough
segmentation and the method will proceed by clustering superpixels into four clusters and
classifying one cluster as the road.
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Figure 4.1: Pseudo-labels generation through Superpixel Clustering [Tsu+18]. The
superpixels and clusters are simplified for illustration clarity.

4.3.2 Superpixel Features Extraction

In order to cluster superpixels, a feature vector is computed for each of them. Feature
maps are extracted from a dilated ResNet that was pre-trained on ImageNet. Since the
method aims at classifying superpixels, it needs to aggregate feature vectors over entire
superpixels. Because the spatial dimensions of the feature maps computed in the previous
step do not match the input shape, the authors propose a superpixel alignment scheme.
Inspired by the ROIAlign procedure used in Mask-RCNN [He+17], they compute feature
vectors for each superpixel for a random sample of pixels in each superpixel by bilinearly
interpolating feature maps. The superpixel feature vector is then obtained by averaging
the feature vector of each sample.

4.3.3 Superpixel Clustering

Superpixels are grouped into four clusters based on their feature vectors, as well as the
spatial position of their centroids. Although any standard clustering algorithm can be
used for this step, an important problem is to determine which cluster corresponds to
free space. The authors take advantage of the fact that, in the Cityscapes dataset, the
road surface is commonly located right above the hood of the ego-vehicle. They obtain
four superpixel clusters using a batched weighted K-Means scheme that takes a gaussian
location prior for the road into account. The road cluster is identified as as the closest
match to the road prior.
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4.4 Evaluation

In this section, we detail the dataset and evaluation metrics used to benchmark the free
space estimation methods introduced in Chapter 5 to 8.

4.4.1 The Cityscapes Dataset

The Cityscapes dataset provides pixel-wise annotations for 30 visual classes in 5000
frames [Cor+15]. Since the test set has no public annotation, and to enable compari-
son with existing work, we treat the 500 frames of its validation set as our test set and
randomly split the Cityscapes training set into 2380 training and 595 validation frames.
In the context of autonomous robot navigation, we consider free space to correspond to
the road object class. Cityscapes also contains 1.6% of frames where no pixel is labeled
as road. For these frames only, we use the ground class to denote free space. Visual
inspection confirmed that ground corresponds to free space in these frames. Finally, the
semantic labels include 6 void classes such as unlabeled, out of the region of interest or ego-
vehicle. Following Cityscapes semantic segmentation benchmarks, pixels that correspond
to such classes are ignored at evaluation time using a mask m ∈ {0, 1}H×W .

4.4.2 Evaluation Metrics

Our evaluation relies on three metrics: Intersection-over-Union (IoU), Precision and Recall
of the free space class. IoU reflects the overall quality of the prediction, but does not
immediately capture the fraction of pixels that are labeled as part of the road when they
are actually occupied. Since these false free space positives are extremely harmful to a
robot navigation scenario, we also emphasize the importance of measuring the Precision
of our predictions, i.e. the fraction of our free space prediction that is indeed free space.
Although it is also interesting to monitor Recall, we note that missing free space has less
impact than false positives in an autonomous driving scenario.

The computation of IoU, Precision and Recall can be visualized for a Cityscapes
sample frame on Figure 4.2. Given a single free space prediction ŷ, ground truth y, and
evaluation mask m, the metrics for a single frame of shape H × W are computed with
Equations 4.1 to 4.3, where ŷ, y, m ∈ {0, 1}H×W . Note that since the output of our
models are real-valued in the [0, 1] interval, a thresholding operation is needed. Unless
otherwise stated, results are reported for the standard threshold τ = 0.5.
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Figure 4.2: Visualization of IoU, Precision and Recall using a sample from
Cityscapes. Pixels labeled as one of the void classes (e.g. ego-vehicle, out of ROI

or unlabeled) are ignored at evaluation time.

IoU =

∑
i ŷiyimi∑

i(ŷi + yi − ŷiyi)mi

(4.1)

Precision =

∑
i ŷiyimi∑
i ŷimi

(4.2)

Recall =

∑
i ŷiyimi∑
i yimi

(4.3)

4.5 Existing Results & Baselines

This section presents existing results that will put the results from the methods presented
in subsequent chapters in perspective. The results from Table 4.1 are split into four
categories, which are detailed in separate subsections: (1) supervised U-Net results, (2)
the Bottom-Half baseline, (3) unsupervised baselines based on SC pseudo-labels, and (4)
other unsupervised approaches. Figure 4.3 illustrates the output and IoU value for the
most relevant baselines on a specific Cityscapes test sample.

4.5.1 Supervised Results

Since Cityscapes provides human annotations for all of the data, it is natural to compare
our unsupervised approach with its supervised counterpart. To this end, we train a
Supervised U-Net using the ground truth labels and observe that it is able to reach high
IoU (94.12%), Precision (97.26%), and Recall (0.9727). Since this is the only method
that uses the ground truth labels for training or validation, we expect it to provide an
upper-bound for unsupervised or semi-supervised results.
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Training Labels
Test
IoU

Test
Precision

Test
Recall

Supervised U-Net ground truth 0.9412 0.9726 0.9727

Bottom Half no training 0.7550 0.7798 0.9616

Raw SC Pseudo-labels [Tsu+18] no training 0.7900 0.8778 0.8924
SC SegNet SC Pseudo-labels 0.8130 0.8936 0.9015
SC U-Net SC Pseudo-labels 0.8152 0.8854 0.9138

PACA [Hof+16] synthetic data 0.7040 not reported not reported
Distant Supervision [TSK17] DS Pseudo-labels 0.8000 not reported not reported
Stereo v-disparity [MUT18] v-disparity reprojection 0.8001 0.9283 0.8529

Table 4.1: Quantitative results on the Cityscapes validation set, which we treat as
our test set to enable comparison with existing work.

(a) Supervised U-Net (97.38% IoU)

(b) Bottom-Half
(70.70% IoU)

(c) Superpixel Clustering Pseudo-label
(87.73% IoU)

(d) SegNet trained on SC Pseudo-labels
(55.35% IoU)

(e) U-Net trained on SC Pseudo-labels
(82.97% IoU)

Figure 4.3: Baseline outputs and IoU for a single Cityscapes test sample. Superpixel Clustering
pseudo-labels are obtained using our own implementation following [Tsu+18].
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4.5.2 Bottom-Half Baseline

In order to compare our approach to other algorithms, we use two simple methods that
do not need training and should act as lower bounds. The Bottom-Half model is a trivial
baseline that classifies the entire lower half of the image as free space. This process is
illustrated on Figure 4.3b. Bottom-Half is able to reach a decent IoU of 75.50% and a
high Recall, which is not surprising since free space indeed covers a large portion of the
lower half of most frames. The Precision of this model is however only of 77.98%, which
is poor compared to other less trivial baselines.

4.5.3 Unsupervised Baselines based on Superpixel Clustering

Raw SC Pseudo-labels We generate approximate labels without supervision using
the Superpixel Clustering technique described in Section 4.3 [Tsu+18]. Evaluating these
raw pseudo-labels, we obtain an IoU of 79.00%, a Precision of 87.78% and a Recall of
89.24%.

SegNet and U-Net trained on SC Pseudo-labels A common way to improve over
results obtained by raw pseudo-labels is to train a predictive model to generalize beyond
the noise in these labels. This was already attempted using the SegNet architecture in
[Tsu+18]. Since the authors of [Tsu+18] do not provide pre-trained weights with their
implementation1, we have reimplemented their method using Pytorch [Pas+19] in order
to compare it to our own methods. Our SegNet baseline is able to improve results over
raw pseudo-labels in IoU (+2.30%), Precision (+1.58%) and Recall (+0.91%). Our re-
implementation reaches slightly better results than the original Chainer implementation
distributed by the authors [AFS17], presumably due to minor differences in Pytorch layer
implementations. We also train a U-Net architecture based on a ResNet-18 backbone
to perform the same task. Since SegNet yields slightly worse IoU results than U-Net
and is slower at training and inference time, we focus our experiments on U-Nets in
subsequent chapters. We stress the fact that both the SegNet and U-Net models do
not use any human-annotated ground truth at any point during training or validation.
Although training from pseudo-labels results in an overall improvement compared to the
raw pseudo-labels, Figure 4.3d shows that it is not always the case for specific samples.

4.5.4 Other Unsupervised Approaches

Competing unsupervised approaches often tackle the more general problem of seman-
tic segmentation, for which other datasets are preferred to Cityscapes [DHS15; Xie+20;
PC15; Dur+17; Cha+20]. Furthermore, papers that use the Cityscapes benchmark seldom
report road-class IoU. Recent unsupervised free space estimation works also use varied

1https://github.com/pfnet-research/superpixel-align

https://github.com/pfnet-research/superpixel-align
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datasets [HAS16; Yao+15]. Two exceptions are Distantly Supervised Road Segmentation
[TSK17] and Pixel-level Adversarial and Constraint-based Adaptation [Hof+16], which
report Road IoU but not Precision or Recall.

Pixel-level Adversarial and Constraint-based Adaptation (PACA) PACA trains
an FCN for semantic segmentation by leveraging both annotated frames from a synthetic
3D-rendered dataset and unannotated ones from the Cityscapes training set. The method
therefore uses ground truth frames from a source domain where they are readily available,
in order to transfer knowledge to a target domain where only unannotated frames can be
used. The main challenge of this simulation-to-reality transfer is the global domain shift
due to synthetic frames looking different than real ones overall. To address this issue, the
authors propose a domain adaptation loss that forces the representations learned from
the target domain to be close to the ones from the source domain. Although the authors
address the generic problem of segmenting frames into 19 different classes, they also share
results for the road class specifically, where they obtain an IoU of 70.40%.

Distantly Supervised Road Segmentation Distantly Supervised Road Segmenta-
tion [TSK17] is another example of pseudo-supervised learning, where the authors propose
to derive pseudo-labels from saliency maps obtained from an ImageNet-trained classifier
[Den+09]. Images containing roads are obtained by searching ImageNet for road-related
labels to train a CNN to distinguish road images from negative samples. Global average
pooling [Zho+16] is then used to extract saliency maps from the last convolutional layer
of this trained classifier. The authors obtain distantly-supervised (DS) pseudo-labels by
computing the intersection between a saliency map and a graph-based superpixel seg-
mentation, before thresholding to classify highly salient superpixels as part of the road.
A Fully-Convolutional Network (FCN) [LSD15] is then trained under pseudo-supervision
and reaches an IoU of 80.00%.

Stereo v-disparity Pseudo-Supervision Mayr, Unger, and Tombari have proposed
the use of stereo frames at training time, in order to generate depth-based pseudo-labels
[MUT18]. They estimate sparse depth maps using stereo reconstruction, and identify
planar surfaces in disparity-space using the v-disparity algorithm. Pseudo-labels are ob-
tained by labeling any pixel that is part of the dominant planar surface as part of the
road. The authors use an evaluation procedure similar to the one described in Section
4.4, but their definition of the road also includes the parking and ground classes. The
authors report an IoU of 80.01%.
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4.6 Overview of the Next Chapters

The next four chapters will exploit a number of concepts for improving over the baselines
described in Section 4.5. Figure 4.4 illustrates how these different research avenues are
explored in subsequent chapters.

Superpixel Clustering Pseudo-labels This pseudo-labeling method has already been
detailed in Section 4.3. We have re-implemented this technique and use the generated
pseudo-labels in both Chapter 5 and 6.

Accounting for label noise during training Some training techniques are explicitly
designed to take label noise into account during the training process, resulting in increased
robustness to mistakes in the pseudo-labels and better generalization on test data. Co-
Teaching is one such technique that has been proposed for classification problems. We
adapt it for segmentation and propose a Stochastic Co-Teaching variant in Chapter 5.

Self-training Since training a model on noisy pseudo-labels results in predictions that
are more accurate than the original pseudo-labels, one can also recursively train a new
model on the output of the first one. This idea is explored in Chapter 6.

Data Augmentation & Self-training Beyond the training algorithm itself, we also
analyze different data augmentation strategies in Chapter 6. The Cutmix augmentation
strategy is also used in the methods proposed in Chapters 7 and 8.

Pseudo-labels based on v-disparity Chapter 7 proposes a different way of generat-
ing free space pseudo-labels using disparity information obtained from a depth estimation
network, the v-disparity algorithm and a novel filtering technique. We show that re-
placing the SC pseudo-labels used thus far with the v-disparity pseudo-labels results in
performance improvements.

Using a restricted subset of ground truth Chapters 5 to 7 strictly focus on learning
to estimate free space without leveraging any annotated frame. In Chapter 8, we relax
this constraint and take a more pragmatic approach by accepting the use of a restricted
subset of ground truth. The proposed method builds on the v-disparity pseudo-labels
proposed in Chapter 7 and explores the use of 1% or 10% of labeled data at training time.
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Figure 4.4: Overview of the concepts introduced or used in the next chapters.
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Chapter 5

Free Space Estimation through
Stochastic Co-Teaching

5.1 Introduction

Free space estimation is an important problem for autonomous robot navigation. As
explained in Chapter 4, traditional camera-based approaches train a segmentation model
using an annotated dataset. However, the training data needs to capture the wide variety
of environments and weather conditions encountered at runtime, making the annotation
cost prohibitively high.

In this chapter, we propose a novel approach for obtaining free space estimates from
images taken with a single road-facing camera. We rely on the technique presented in
Section 4.3 to generate approximate free space labels without any supervision [Tsu+18].
These pseudo-labels are then used as ground truth to train a segmentation model for free
space estimation.

This chapter is based on the following published article:

François Robinet, Claudia Parera, Christian Hundt, and Raphaël Frank.
“Weakly-Supervised Free Space Estimation Through Stochastic Co-Teaching”. In:

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV) Workshops. Jan. 2022, pp. 618–627

Our work differs from prior attempts by explicitly taking label noise into account
through the use of Co-Teaching. Since Co-Teaching has traditionally been investigated in
classification tasks, we adapt it for segmentation and examine how its parameters affect
performances in our experiments. In addition, we propose Stochastic Co-Teaching, which
is a novel method to select clean samples that leads to enhanced results.

We achieve an IoU of 82.6%, a Precision of 90.9%, and a Recall of 90.3%. Our
best model reaches 87% of the IoU, 93% of the Precision, and 93% of the Recall of the
equivalent fully-supervised baseline while using no human annotations. To the best of our
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knowledge, this work is the first to use Co-Teaching to train a free space segmentation
model under explicit label noise, and these results constituted the state-of-the-art at the
time of their submission. We have since improved them using the techniques described in
Chapters 6 and 7.

The contributions of the work presented in this chapter can be summarized as fol-
lows: 1) we adapt Co-Teaching for segmentation tasks and illustrate its effectiveness on
the particular case of free space estimation, 2) we study the impact of the Co-Teaching
schedule on performances, 3) we propose a refinement called Stochastic Co-Teaching, 4)
we compare Stochastic Co-Teaching to standard training and traditional Co-Teaching and
observe improvements in both IoU and Precision, and 5) we analyze the limitations of the
proposed approach. We also make our code and models available online.

The remainder of this chapter is organized as follows: In Section 5.2, we review the
recent literature for both free space estimation and pseudo-supervised segmentation. In
Section 5.3, we introduce our pseudo-supervised Co-Teaching approach to free space es-
timation and describe the baseline methods used for benchmarking. In Section 5.4, we
detail the experimental setup of this study. In Section 5.5, we carry out experiments,
detail the qualitative and quantitative results achieved, analyze the limitations of our
approach, and share further research directions. Finally, we conclude with a summary of
our contributions.

5.2 RelatedWork on Segmentation under Label Noise

Section 4.2 has already covered learning techniques for supervised and unsupervised se-
mantic segmentation, as well as segmentation techniques specific to free space. Rather
than repeating these references, this section specifically focuses on techniques for robustly
training under label noise.

Recent research has shown that it is possible to train over-parametrized models to
generalize past some of the label noise using Stochastic Gradient Descent (SGD) schemes
combined with early stopping [LSO20]. However, approaches that explicitly deal with
noisy labels can further improve performances, and have become an important research
focus over the past few years. Solutions to this problem include label cleaning [Chi+19],
noise-aware network architectures [Suk+15], or noise reduction through robust loss func-
tions [MES08; Lu+17; Rob+20]. Another line of research proposes to adapt the training
procedure itself. Curriculum learning [Ben+09] is based on training a model on samples
of increasing difficulty, which can correspond to different noise levels [Jia+18; Guo+18].
Knowledge distillation [HVD15] is another procedure that can cope with noise by train-
ing the teacher model on a relatively clean subset of the data, and using it to guide the
training of the student model on the whole dataset [Li+17]. Decoupling [MSS17] and
Co-Teaching [Han+18] are two other approaches where two models are trained simulta-
neously. Decoupling trains both models only on data where their outputs disagree, while
Co-Teaching trains each model on the fraction of the data that the other considers to be
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clean. For a more comprehensive overview of techniques that cope with noisy labels in
image analysis, we refer the reader to the survey in [Kar+20].

The work presented in this chapter builds on supervised segmentation research through
its use of the U-Net architecture described in Section 2.5. We address label noise us-
ing a Co-Teaching training scheme that we adapt for segmentation tasks. We choose
Co-Teaching because it has been shown to perform well under moderate amounts of
noise [Che+19a]. We present our method in detail in the next section.

5.3 Methodology

In this section we describe the main steps of our pseudo-supervised approach for the free
space estimation task using Co-Teaching. We present Co-Teaching and its adaptation for
a segmentation task, and we introduce our Stochastic variant. Since we focus on improving
the training aspect, we use the pseudo-labels described in Section 4.3 as targets during
training. We benchmark the performances of (Stochastic) Co-Teaching against a fully-
supervised model, as well as against unsupervised and pseudo-supervised baselines in
Section 5.5.

5.3.1 Co-Teaching for Segmentation

The intuition for Co-Teaching is based on memorization properties of deep neural net-
works trained with a variant of SGD [Han+18]. Although these networks are capable
of overfitting random noise in their training set [Zha+16], they also learn patterns from
clean data first [LSO20]. To exploit this property, Co-Teaching proposes to train two
separate student networks f and g, and to have each one select clean instances for the
other to train on. Since models tend to learn from clean data first, standard Co-Teaching
selects clean labels as the ones with the lowest loss. The main additional meta-parameter
of Co-Teaching is a schedule R(t) that defines the fraction of the data that is considered
clean and should be used for training at any given iteration t. In early iterations, models
have not learned enough to identify noise in the training data, and we should generally
set R(t) ≈ 1. As training goes on, R(t) should tend towards the expected noise rate τ ,
such that all the noise and only the noise gets discarded. In a pseudo-supervised setting,
τ is unknown and one must either estimate it or try different schedules. Although it has
traditionally been used in classification tasks, Co-Teaching has also recently seen some
success when training an object detector from noisy bounding boxes [CN20]. To the best
of our knowledge, this work is the first to adapt it to a segmentation task. Our adaptation
is straightforward: we consider each pseudo-labeled pixel as an independent label, and
therefore train each network on a sample of all pixels in a batch. The entire procedure is
detailed in Algorithm 1.
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5.3.2 Stochastic Co-Teaching

We further propose a refinement named Stochastic Co-Teaching. Rather than system-
atically selecting the subset of labels that incur the least loss, Stochastic Co-Teaching
samples them with weights that are inversely proportional to their loss. With this change,
when labels in a batch incur similar losses, they are all similarly likely to be selected for
training, regardless of the schedule R(t). We are trusting that low-loss labels are more
likely to be clean, but we accept that some higher-loss samples can also be selected with
lower probability. Rather than being noisy, some of these high-loss labels may correspond
to harder examples that should not be systematically discarded. Figure 5.1 illustrates
the whole process: (a) An identical batch of B images with resolution H ×W is fed to
independent networks f and g, (b) pixel-wise losses L(f) and L(g) are computed using the
noisy labels for each image, (c) clean indices I(f) and I(g) are independently selected for
each student network by sampling a fraction R(t) of indices without replacement and with
probability inversely proportional to their loss, (d) networks exchange their clean indices
and use them to sub-sample their own losses and obtain L̄(f) and L̄(g), (e) each network
only learns from pixels that the other student deems clean. Note that nothing prevents
the use of networks f and g with completely different topologies. In this work, students
share the same architecture, but their weights are randomly initialized independently from
each other.

Algorithm 1: (Stochastic) Co-Teaching for Segmentation

Inputs: Models f and g, data generator G, loss L, max iterations T and schedule R(t)
1 forall t ∈ {1, . . . , T} do
2 Obtain next batch (x, yweak) ∈

(
RB×H×W×3 × RB×H×W

)
from training data G

3 Compute per pixel losses L(f) = L (f(x), yweak) and L(g) = L (g(x), yweak)
4 Compute n = R(t)×B ×H ×W , the number pixel samples to keep
5 if stochastic co-teaching then
6 Let S(w, k) randomly sample k unique indices of w, using values of w as weights

7 Sample n clean indices I(f) = S
(
1/L(f), n

)
and I(g) = S

(
1/L(g), n

)
8 else
9 Let TopK (z, k) select the indices of the k largest elements of z

10 Compute n clean indices I(f) = TopK
(
1/L(f), n

)
and I(g) = TopK

(
1/L(g), n

)
11 Compute clean losses L̄(f) =

{
L
(f)
i :i ∈ I(g)

}
and L̄(g) =

{
L
(g)
i :i ∈ I(f)

}
12 Update f using ∇L̄(f) and g using ∇L̄(g)

5.4 Experimental Setup

Dataset & Evaluation We report IoU, Precision and Recall results on the Cityscapes
dataset [Cor+15]. Complete descriptions of the Cityscapes dataset and of the evaluation
metrics were respectively given in Sections 4.4.1 and 4.4.2.
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Figure 5.1: Stochastic Co-Teaching. Student networks compute their own pixel-wise
loss, and randomly select a subset of clean pixels to train on, based on loss values of

the other student.

Network architectures Following recent research that shows that a well-tuned vanilla
U-Net can outperform many variants on segmentation tasks [Ise+18], we opt for a U-Net
structure based on a ResNet18 backbone (14.3M parameters) [RFB15; He+16; Yak19].
To compare with prior art, we also implement and train the SegNet model described by
Tsutsui et al. [Tsu+18]. For computational reasons, we use a 512× 1024 input resolution
in all experiments. Outputs are however re-scaled using nearest neighbor interpolation in
order to compute metrics in the original 1024× 2048 resolution.

Training procedure Since Tsutsui et al. do not share trained weights for their SegNet
architecture, all models are trained from randomly initialized weights to allow for fair
comparison. We use the PyTorch framework [Pas+19] and train models with the Adam
optimizer [KB15], a batch size of 6 and a learning rate of 0.001. The models are trained
on a single NVIDIA K80 until the training loss plateaus, which occurs after 25 epochs for
U-Nets and 50 epochs for SegNets. We keep all intermediate models and perform model
selection post-training.

Model selection In the context of pseudo-supervised learning, we must be careful when
performing model selection. This is especially important since Cityscapes provides ground
truth annotations for all training and validation frames used in this study. We stress that
these frames are never used for training, picking hyper-parameters, or to perform early
stopping. We therefore evaluate ground truth IoU, Precision and Recall only once on
the test set, after all these steps have been performed. Models trained with standard
training loops are selected to minimize the validation loss. This approach has to be
slightly adapted when using Co-Teaching, since the scale of the loss varies with the value
of R(t), the fraction of data to be considered clean over time. As explained in Section 5.3,
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Training/Validation
Labels

Test
IoU

Test
Precision

Test
Recall

Supervised U-Net (standard training) ground truth 0.9412 0.9726 0.9727
Supervised U-Net (Co-Teaching ensemble) ground truth 0.9311 0.9621 0.9646

Supervised U-Net (Stochastic Co-Teaching ensemble) ground truth 0.9360 0.9664 0.9655

Bottom Half no training 0.7550 0.7798 0.9616
Raw Pseudo-labels [Tsu+18] no training 0.7900 0.8778 0.8924

Unsupervised Domain Adaptation [Hof+16] synthetic data 0.7040 not reported not reported
Distant Supervision [TSK17] image labels 0.8000 not reported not reported

Standard SegNet pseudo-labels 0.8130 0.8936 0.9015
Standard U-Net pseudo-labels 0.8152 0.8854 0.9138

Co-Teaching U-Net (best student) pseudo-labels 0.8214 0.8995 0.9074
Stochastic Co-Teaching U-Net (best student) pseudo-labels 0.8237 0.9076 0.9017

Co-Teaching U-Net (ensemble) pseudo-labels 0.8219 0.9028 0.9047
Stochastic Co-Teaching U-Net (ensemble) pseudo-labels 0.8261 0.9093 0.9027

Table 5.1: Quantitative results on the Cityscapes validation set, which we treat as
our test set.

R(t) usually starts at 1, before decreasing to a minimum, and again increasing to plateau
at R(t) = τ . When R(t) is smaller, a larger fraction of high-loss samples is discarded and
the loss value is deflated. To account for this, we only select models in the final plateau
of our schedules, where R(t) = τ . For more information about the schedules R(t) we
consider, see Section 5.6.

5.5 Results

This section outlines the set of experiments carried out to benchmark our proposed
method, using IoU, Precision and Recall. Five main types of approaches were tested:
1) Fully-supervised upper-bounds, 2) unsupervised baselines, 3) standard training, 4)
(Stochastic) Co-Teaching, and 5) Ensembling (Stochastic) Co-Teaching students. The
quantitative results are summarized in the five categories of Table 5.1. In this section, we
present results for each category and qualitative results for our best model.

Fully-Supervised Upper-bound Since Cityscapes provides human annotations for
all of the data, it is natural to compare our unsupervised approach with its supervised
counterpart. To this end, we train a Fully-Supervised U-Net using the ground truth
labels and observe that it is able to reach high IoU (0.9412) and Precision (0.9726). Since
this is the only method that uses the ground truth labels for training or validation, we
expect it to provide an upper-bound for unsupervised results. To account for the effect
of potential noise in the ground truth, we also train the same network using (Stochastic)
Co-Teaching. Since ground truth data is assumed to contain only a small amount of noise,
we use a specific R(t) schedule that trains on the whole training data for one epoch, before
progressively discarding up to 4% of the training data and slowly incorporating 3% back
in to finish training with R(t) = 0.99. Examples of similar schedules are illustrated in
Section 5.6. We observe that both Co-Teaching and Stochastic Co-Teaching result in
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degraded performance in the fully-supervised case. We suggest two hypotheses to explain
this. The most likely scenario is that we are discarding valuable data and that ground
truth label noise, although always present in pixel-wise annotations, is likely negligible
for our purposes. A second option is that the ground truth label noise present in training
data is also present in test data, making exact evaluation unreliable.

Unsupervised Baselines In order to compare our approach to other algorithms, we
use two simple methods that do not need training and should act as lower bounds. The
Bottom Half model is a trivial baseline that classifies the entire lower half of the image
as free space. Bottom-Half is able to reach a decent IoU of 0.7550 and a high Recall,
which is not surprising since free space indeed covers a large portion of the lower half
of most frames. The Precision of this model is however only of 0.7798, which is poor
compared to the 0.8778 achieved by our second unsupervised baseline, the raw Pseudo-
labels from [Tsu+18]. This second baseline also yields a large IoU improvement, reaching
0.7900. Competing unsupervised approaches often tackle the more general problem of
semantic segmentation, for which other datasets are preferred to Cityscapes [DHS15;
Xie+20; PC15; Dur+17; Cha+20]. Furthermore, papers that use the Cityscapes bench-
mark seldom report road-class IoU. Recent unsupervised free space estimation works also
use varied datasets [MUT18; HAS16; Yao+15]. Two exceptions are presented in [TSK17]
and [Hof+16], which respectively obtain an IoU of 0.8 and 0.704, but do not report Pre-
cision and Recall.

Standard Training We train both our own U-Net and the SegNet model described
in [Tsu+18], using the pseudo-labels as targets in a standard training loop. We stress
the fact that these models do not use any human-annotated ground truth at any point
during training or validation. As previously observed in [LSO20], standard training is
robust to noise to some degree, and our models are able to generalize beyond the noise in
their training targets. Compared to raw pseudo-labels, U-Net is able to improve in IoU
(+2.52%), Precision (+1.58%), and Recall (+2.34%). Since SegNet yields slightly worse
IoU results than U-Net (+2.3%) and is slower at training and inference time, we focus
our Co-Teaching experiments on U-Nets.

(Stochastic) Co-Teaching Training We first report results from the best student
models, which are selected as having the lowest validation loss among the two students
of each Co-Teaching experiment. Note that all models trained with Co-Teaching in the
4th and 5th sections of Table 5.1 use a tuned R(t), whose effect on the performance is
explored in Section 5.6. Co-Teaching is able to improve over standard training in both IoU
(+0.62%) and Precision (+0.76%), while our stochastic variant results in an additional
improvement of 0.23% in IoU and 0.81% in Precision.

Ensembling Models trained with (Stochastic) Co-Teaching To assess their con-
vergence, we run Co-Teaching trained students over the training data and we observe a
high agreement over the free space predictions (99.2% of pixels are predicted the same),
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and over which pixels should be considered clean for training (99.4% agreement). Due
to its additional sampling step, we observe a slightly lower convergence when Stochastic
Co-Teaching is used (97.6% agreement on predictions, 97.8% on clean indices). Since the
students exhibit similar validation losses but are not completely equivalent, it is natural
to ensemble them by averaging their confidence outputs before thresholding for a pre-
diction. We obtain our best model using this strategy with the Stochastic Co-Teaching
students, yielding an IoU of 82.61%, a 0.24% improvement over the best student, and a
0.42% improvement over the Co-Teaching equivalent. These results amount to 87% of the
IoU, 93% of the Precision, and 93% of the Recall of the fully-supervised baseline while
not using any human labels.

Qualitative Results Figure 5.2 shows test set predictions of our Stochastic Co-Teaching
U-Net, and compares them against the Cityscapes ground truth and raw pseudo-labels.
The first three columns of images illustrate the higher Precision of our learned model. It is
able to classify regions such as cars or pedestrians as occupied, even though pseudo-labels
mark them as free space. Improvements in Precision happen at the cost of Recall, and
our predictions tend to be less homogeneous than pseudo-labels. This can be explained
by the fact that pseudo-labels are obtained by clustering superpixels and therefore profit
from the homogeneity of the superpixel segmentation. Finally, the last row illustrates
a failure case: the pseudo-labels are almost flawless but the model fails to segment free
space correctly.

5.6 Co-Teaching Schedule Impact

The most important hyper-parameter of Co-Teaching is the schedule R(t), which controls
the fraction of the training data that should be considered clean at any epoch t. Following
recent research, our R(t) starts at one, decrease to a minimum and then increase to
plateau at a final value R(T ) [Yao+20]. We choose piecewise linear schedules, and vary
the length of their warmup phase where R(t) = 1, their minimum and their final value.
Figure 5.3 illustrates the schedules we consider, and the two parts of Table 5.2 presents the
corresponding test set metrics for the Co-Teaching U-Net model presented in Section 5.5.
In the first part of Table 5.2, we alter both the minimum and final values of R(t). The
70%-85% schedule discards so much data that many clean labels are also ignored. This
lowers the IoU to 0.3749, while the decreased noise allows the Precision to rise to 0.9352.
As more data is kept in rows 2 to 4, IoU increases, while Precision slightly decreases. Since
our goal is to balance IoU with Precision, we select 90%-95% for further investigation. In
the second part of Table 5.2, we keep the schedule bounds fixed to 90%-95% and vary the
length of the initial warm-up phase, where R(t) = 1 and all the data is kept. We observe
little impact on IoU, but Precision gradually rises with shorter warm-up phases. This
indicates that few iterations are enough for the student models to identify and discard
noise, and we select the 90%-95% with a single warm-up epoch as our best R(t) schedule,
for which we reported our results in Section 5.5.
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Pseudo-Labels
Stochastic 

Co-Teaching

Figure 5.2: Qualitative results from the test set. Green, red and orange respectively
indicate correct, incorrect and missing free space predictions. Note that we display the
raw outputs of our model, without masking the ego-vehicle or void classes discussed

in Section 4.4.1.
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Figure 5.3: Tested R(t) schedules.

R(t)
Bounds

Warm-up Test IoU Test Precision

70% 85% 4 0.3749 0.9352
70% 90% 4 0.8081 0.9021
70% 95% 4 0.8079 0.8961
90% 95% 4 0.8214 0.8940

90% 95% 2 0.8210 0.8970
90% 95% 1 0.8214 0.8995

Table 5.2: Co-Teaching U-Net results.
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Figure 5.4: Distribution of U-Net pixel-wise loss after 2 training epochs on pseudo-labels.

5.7 Limitations of (Stochastic) Co-Teaching

The introduction of sampling during the training process in the stochastic variant results
in performance gains. However, these gains are limited to a few percentage points. To
understand why, we take advantage of the availability of ground truth labels in training
data from Cityscapes. We train the same U-Net model used in previous experiments for
2 warm-up epochs using the entire pseudo-labels and depict the distribution of pixel-wise
losses on Figure 5.4. This allows us to observe the distribution of noise with respect to
the loss at the beginning of training, and analyze the impact of applying different training
strategies in subsequent epochs.

Figure 5.4 illustrates an absence of noisy labels at low loss values, and a much larger
proportion of wrong labels at high loss values. The Co-Teaching assumption that almost
all noisy labels incur high loss values is not completely respected in this case. Indeed, non-
negligible noise is also observed at median loss values. This empirical example validates
the idea of sampling rather than using a fixed loss cutoff to reject likely noisy samples.
Table 5.3 presents the noise statistics for training a third epoch using different strategies.
When discarding 5% of pixels with the highest loss in each batch, Co-Teaching is able to
discard 3.3% of the noise, while only removing 1.7% of the clean data. By sampling the
training losses 10000 times and reporting mean noise statistics along with their standard
deviation, we observe that Stochastic Co-Teaching is able to discard slightly more noise.

Using the knowledge that our training pseudo-labels contain 15.67% of noise, we show
that using R(t) = 0.85 rejects a larger fraction of the noise, but also rejects more clean
data. The fact that both Co-Teaching methods invariably sacrifice a small fraction of
clean data explains why their Recall results are slightly worse than for Standard training
in Table 5.1.

We remind the reader that our previous experiments were conducted without any use
of the ground truth on the training and validation data, which prevents the use of such
noise level estimates to set optimal co-teaching schedules in practice.
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Training Strategy
Discarded

Noise
Discarded

Clean

Standard 0% 0%
Co-Teaching (R(t) = 0.95) 3.3% 1.7%

Stochastic Co-Teaching (R(t) = 0.95) 3.6%± 0.04% 1.4%± 0.04%

Co-Teaching (R(t) = 0.85) 7.2% 7.8%
Stochastic Co-Teaching (R(t) = 0.85) 7.5%± 0.11% 7.5%± 0.11%

Table 5.3: Noise statistics using different training strategies.

5.8 Conclusion

In this chapter, we introduce a novel approach for training a neural network to predict
free space from images taken with a single road-facing camera. We train our models
using pseudo-labels that are generated without expensive human annotations, and adapt
Co-Teaching to our segmentation task in order to cope with label noise. To the best
of our knowledge, our method is the first free space estimation approach to explicitly
take label noise into account during training by using an adaptation of Co-Teaching. We
also propose Stochastic Co-Teaching, a refinement that allows us to improve over results
obtained with standard training and classical Co-Teaching procedures. By ensembling
students trained with Stochastic Co-Teaching, we improve over standard training in both
IoU (+1.1%) and Precision (+2.4%). Our best model reaches 87% of the IoU and 93% of
the Precision of the fully-supervised competitor that trains from ground truth pixel-wise
labels.
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Chapter 6

Data Augmentation and
Self-Training for Free Space
Estimation

6.1 Introduction

Perception is the first step towards autonomous robot navigation. To be able to safely
act in the world, a robot needs to perceive its environment and identify traversable free
space. As explained in Chapter 4, in the context of autonomous driving, free space is
usually defined as road areas that are not occupied by either static objects such as traffic
signs and road dividers, or by dynamic entities such pedestrians and cars [Jan+20]. Since
collision-free planning requires a fine-grained understanding of the environment around
the vehicle, we attempt to label each pixel of a front-facing camera as traversable or not.

As detailed in Section 4.2, the large labor costs entailed by labeling of ground truth
frames and the wide variety of environments and lightning conditions encountered at
runtime make supervised segmentation difficult to scale for this task. Instead, we tackle it
in a different way: relying on a method that generates noisy free space annotations without
any supervision [Tsu+18], we train a neural network to generalize past the pseudo-label
noise using data augmentation and recursive training. This approach is similar to the Co-
Teaching experiments presented in Chapter 5 in that it uses the same pseudo-labels and
focuses on improving training aspects. Rather than tweaking the training loop itself with
Co-Teaching, this chapter explores different data augmentation scenarios, and analyzes
how self-training impacts performances.

This chapter is based on the following published article:

François Robinet and Raphaël Frank. “Refining Weakly-Supervised Free Space
Estimation Through Data Augmentation and Recursive Training”. In: Proceedings of

BNAIC/BeneLearn 2021. 2021
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Following its conference presentation, this article was also selected by the organizing
committee for publication in the following journal issue:

François Robinet and Raphaël Frank. “Refining Weakly-Supervised Free Space
Estimation Through Data Augmentation and Recursive Training”. In: Artificial

Intelligence and Machine Learning. Springer International Publishing, 2022, pp. 30–45.
isbn: 978-3-030-93842-0. doi: 10.1007/978-3-030-93842-0_2

The contributions presented in this chapter can be summarized as follows: (1) we
study the impact of data augmentation on pseudo-supervised free space segmentation,
(2) we propose a recursive training scheme that uses a progressively refined ground truth,
(3) we improve existing results for unsupervised free space estimation on the Cityscapes
dataset over previous efforts, gaining +2.3% in IoU, +2.4% in Precision, and +0.4% in
Recall, (4) we discuss the limitations of our simple recursive training approach, and (5)
we release our code and models to facilitate reproduction and further work.

To the best of our knowledge, these results established the state-of-the-art for monocu-
lar unsupervised free space estimation at the time of their submission. We later proposed
the techniques discussed in Chapter 7 to further improve these results.

The remainder of this chapter is organized as follows: In Section 6.2, we review the
recent literature for free space estimation, data augmentation in the context of semantic
segmentation, and recursive training. In Section 6.3, we introduce our data augmentation
and recursive training schemes. In Section 6.4, we describe our use of the Cityscapes
dataset [Cor+15] and detail the experimental setup of this study. In Section 6.5, we carry
out experiments and present the qualitative and quantitative results achieved. Finally,
we summarize our contributions.

6.2 Related Work on Training Strategies for Pseudo-

Supervised FSE

Related work on Free Space Estimation (FSE) has already been presented in Section
4.2, and an overview of methods that deal with label noise at training time is available in
Section 5.2. Rather than repeating this information, this section focuses on regularization
through data augmentation and self-training strategies.

Recent research shows that it is possible to train over-parametrized models to gen-
eralize past some of the label noise using Stochastic Gradient Descent (SGD) schemes
combined with early stopping [LSO20]. Dealing with label noise at training time has be-
come an important research area over the past few years. Solutions to this problem include
label cleaning [Chi+19], noise-aware network architectures [Suk+15], or noise reduction
through robust loss functions [MES08; Lu+17; Rob+20].

https://doi.org/10.1007/978-3-030-93842-0_2
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Besides work on training algorithms themselves, researchers have also largely explored
regularization through data augmentation in unsupervised settings. Traditional augmen-
tation strategies (scaling, color jittering, flipping, cropping, etc.) change pixel values in a
single input image without altering its semantic content. More recently, researchers have
proposed augmentations that combine several images and their labels. Two notable exam-
ples are MixUp [Zha+18] and CutMix [Yun+19]. MixUp is a method that augments the
training set using convex combinations of image pairs and labels, while CutMix overlays
random crops of other samples on top of original frames.

Since the output of models trained on pseudo-labels can be seen as stronger labels,
another interesting research direction uses recursive training to iteratively refine segmen-
tation results [DHS15; Kho+17].

6.3 Methodology

In this work, we train U-Net models to predict dense free space from RGB images by
learning on approximate labels that can be generated without any supervision. Since our
focus is on improving training aspects rather than on improving pseudo-labels generation,
we will reuse the pseudo-labels from [Tsu+18]. We look at improving training across two
dimensions: data augmentation and recursive training.

6.3.1 Data Augmentation

We study the impact of data augmentation on pseudo-supervised free space estimation.
We cover both traditional augmentation techniques that operate on single images, as well
as MixUp and CutMix, which are more recent and combine multiple samples.

Color-Flip-Crop To represent traditional augmentation techniques, we use a combi-
nation of color jittering, horizontal flips and random cropping, which we will refer to as
Color-Flip-Crop or CFC in the remainder of the text. Each augmentation is indepen-
dently applied with a 50% probability. The color jittering randomly affects brightness,
contrast, saturation, and hue using the bounds defined in the Torchvision implementa-
tion [Tor]. In order to preserve most of the original image, cropping is performed with a
randomly chosen rectangle that occupies between 25% and 50% of the image area. The
aspect ratio is also randomly chosen, with the constraint that the height is at least 10%
of the height of the original image. Figure 6.1 shows some examples of the effect of CFC
on a single randomly chosen training image.

MixUp Rather than augmenting isolated images, Mixup trains models on convex com-
binations of samples [Zha+18]. By training on synthesized samples that lie between
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Figure 6.1: Seven possible Color-Flip-Crop augmentations on a random training sample. The
original sample is on the top-left. We show ground truth mask for illustration purposes, they

are not used during training.

(a) (b) (c)

Figure 6.2: MixUp augmentation combining two random samples (a) and (b) from the training
set. The convex combination using λ = 0.5 is shown as (c). We show ground truth mask for

illustration purposes, they are not used during training.

the original training samples, MixUp encourages the network to exhibit a linear behav-
ior between samples and helps preventing memorization. During training, each sample
(x1, y1) is combined with another random sample (x2, y2) from the batch using Equa-
tions 6.1 and 6.2, where we sample λ uniformly in [0, 1]. The effect of combining input
samples is illustrated on Figure 6.2.

xmixup = λx1 + (1− λ)x2 (6.1)

ymixup = λy1 + (1− λ)y2 (6.2)

CutMix Similar to Mixup in spirit, CutMix also combines two random input samples
(x1, y1) and (x2, y2) from the same batch [Yun+19]. Rather than combining them over
the entire image, CutMix overlays a crop of x2 over x1, and the same crop of y2 over y1.
Equations 6.3 and 6.4 formalize this process using a random binary mask M ∈ {0, 1}H×W

to denote the cropped area (◦ denotes the element-wise product). Like for the CFC
augmentation, the cropping mask M occupies between 25% and 50% of the image area
with a random aspect ratio. Figure 6.3 illustrates four different instances of CutMix
augmentation on a chosen training sample. CutMix generates more natural images than
MixUp and allows the network to learn more localizable features since the transformation
is only applied to a fraction of the input image.
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Figure 6.3: Four instances of the CutMix augmentation on a random training sample.
We show ground truth mask for illustration purposes, they are not used during training.

xcutmix = (1−M) ◦ x1 +M ◦ x2 (6.3)

ycutmix = (1−M) ◦ y1 +M ◦ y2 (6.4)

6.3.2 Recursive Training

We are training neural networks to estimate free space by learning on approximate labels
yweak. Since neural networks trained with SGD variants are partially robust to noise in
their training targets [LSO20], the outputs y will tend to approximate the unknown ground
truth y∗ better than yweak. Assuming the outputs y are better estimates of free space
than yweak, it is natural to treat them as cleaner targets for a second round of training.
This process can in principle be iterated to obtain progressively cleaner outputs y2, y3,
etc. This approach was already attempted in the context of pseudo-supervised free space
segmentation [TSK17], but we revisit its impact in the presence of data augmentation
and with different pseudo-labels. Figure 6.4 illustrates the process for a given training
round.
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Figure 6.4: Recursive training procedure. The current model is trained on augmented outputs
from the model obtained at the previous training round. In this example, CFC is used for

augmentation. The process is similar for other augmentation strategies.
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6.4 Experimental Setup

6.4.1 Network Architectures

Following recent research that shows that a well-tuned vanilla U-Net can outperform
many refined variants on most segmentation tasks [Ise+18], we opt for a U-Net structure
based on a ResNet18 residual network backbone [RFB15; He+16; Yak19]. To allow for
comparison with prior art, we also implement and train the SegNet model described
in [Tsu+18]. For computational reasons, we use a 512 × 1024 input resolution in all
experiments. Outputs are however re-scaled using nearest neighbor interpolation in order
to compute IoU and Precision in the original 1024× 2048 resolution.

6.4.2 Training Procedure

We use the PyTorch framework [Pas+19] and train randomly initialized models to mini-
mize a binary cross-entropy loss using the Adam optimizer [KB15], a batch size of 8 and
an initial learning rate of 0.001. We train our models on single NVIDIA V100 for up to
200 epochs, with an early stopping strategy that halts training when the validation loss
has not improved by at least 10−4 for 50 consecutive epochs. For each experiment, we
select the model that minimizes the validation loss.

6.4.3 Use of Ground Truth Data

The Cityscapes dataset provides ground truth annotations for all training and validation
frames used in this study. We stress that these annotations are only used to train the
fully-supervised baseline for comparison with our pseudo-supervised approach. Outside
of the fully-supervised experiment, ground truth labels are never used for training, hyper-
parameter tuning, or to perform early stopping. Ground truth IoU, Precision and Recall
are computed only once on the test set, after all these steps have been performed.

6.5 Results

This section describes the experiments carried out to benchmark our proposed method,
using Precision, IoU and Recall. We present results for three main categories of models: 1)
a fully-supervised upper-bound, 2) unsupervised and pseudo-supervised baselines, and 3)
U-Nets trained on the pseudo-labels using recursive training and different augmentation
strategies. The quantitative results for each category are summarized in Table 6.1. In
this section, we analyze the results of each category, discuss the limitations of recursive
training, and present qualitative results.
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6.5.1 Fully-Supervised Results

Since Cityscapes provides pixel-wise ground truth annotations for our training and valida-
tion data, we use it to train a fully-supervised U-Net for comparison with its unsupervised
counterpart. When trained on ground-truth labels, our U-Net model reaches high IoU
(94.12%), Precision (97.26%) and Recall (97.27%). Since this fully-supervised model is
the only one that uses ground truth labels at any point during training and validation,
it is expected to produce an upper-bound for our unsupervised experiments. When using
the CutMix augmentation strategy, IoU is slightly improved and reaches 94.54%.

6.5.2 Unsupervised and Pseudo-Supervised Baselines

Competing unsupervised approaches are often focused on generic semantic segmentation
rather than free space estimation, and use other datasets than Cityscapes as bench-
marks [DHS15; Xie+20; PC15; Dur+17; Cha+20]. Among unsupervised approaches
that tackle free space estimation [HAS16; TSK17; Hof+16], only two publish results for
Cityscapes. Distant Supervision [TSK17] and Unsupervised Domain Adaptation [Hof+16]
respectively obtain an IoU of 80% and 70.4%, but do not report Precision or Recall values.

We generate approximate labels without supervision using the technique described
in [Tsu+18]. Evaluating these raw pseudo-labels, we obtain an IoU of 79%, a Precision
of 87.78% and a Recall of 89.24%. These results can be further improved by training
a neural network to generalize beyond the noise in these labels. This was already at-
tempted using the SegNet architecture in [Tsu+18], which we also implement and train
for comparison. SegNet is able to improve results over raw pseudo-labels in IoU (+2.3%),
Precision (+1.58%) and Recall (+0.91%).

6.5.3 Data Augmentation & Recursive Training

We train the same U-Net model using different data augmentation strategies. Since the
outputs of our different augmented U-Nets are better than the initial pseudo-labels, we
use them as target for a second round of training. We iterate this recursive training
process four times for each of the data augmentation strategies under study. We limit
training to four rounds for computational reasons and because it is enough for IoU values
to reach their peak.

No Augmentation We start by training a U-Net with the pseudo-labels as targets and
without any data augmentation. We observe that it compares favorably with the results
from SegNet, reaching an IoU of 81.85%, a Precision of 90.65%, and a Recall of 89.76%.
Without resorting to data augmentation, recursive training over several rounds is unable
to meaningfully improve IoU, and slightly decreases Precision in favor of Recall.



6.5. Results 69

MixUp Applying MixUp allows to improve Precision compared to not using data aug-
mentation by 0.5% in the first training round. IoU is maintained, but Recall decreases
by 0.45%. Iterative training is however not effective when combined with MixUp, since
we observe a drop in Precision after each round. As discussed in Section 4.4.2, free space
IoU and Precision are more important than Recall in an autonomous navigation scenario.
In this case, increases in Recall are not enough to compensate this effect, and we observe
a steady decrease in IoU.

Color-Flip-Crop Traditional data augmentation consisting of color jittering, horizon-
tal flips and random cropping is able to improve IoU over not using augmentation and
over using MixUp. After a single training round, CFC allows to reach an IoU of 81.99%
through increasing Recall by 1.47% compared to the first round without augmentation.
Subsequent training rounds are able to improve both Precision and IoU. After 3 iterations,
the model reaches an IoU of 82.34% and a Precision of 90.75%.

CutMix The CutMix augmentation can be seen as providing the advantages of cropping
and MixUp. Like MixUp, it synthesizes new input samples by combining pairs of existing
ones. However, CutMix produces more natural images and its effect is localized since it
only affects the area of a random crop. The locality of CutMix has been shown to allow
models to learn more localizable features in classification scenarios [Yun+19], and it is
not surprising that such features are helpful in this segmentation context. Indeed, models
trained with CutMix augmentation outperform all other models by a wide margin. After
a single training round, CutMix improves over not using augmentations in IoU (+1.2%),
Precision (+0.5%), and Recall (+0.26%).

Since our application scenario favors Precision over Recall, our best overall model is
obtained after the fourth training round, reaching an IoU of 83.64% and a Precision of
91.75%. Compared to the prior state-of-the-art results from SegNet [Tsu+18], it improves
IoU by 2.3%, Precision by 2.4% and Recall by 0.4%. Although our model does not rely
on any human-annotated ground truth, its relative performance compared to the fully-
supervised variant is impressive: we reach 88.8% of its IoU, 94.3% of its Precision, and
93.1% of its Recall.

6.5.4 Limits of Recursive Training

While CutMix results are impressive, we note that the success of recursive training is
limited. When not applying data augmentation or when using MixUp, recursive training
does not improve on IoU or Precision. In the case of CFC and CutMix augmentations,
results are more encouraging, but the improvements are limited to three rounds of training.
Starting with the fourth round of training, IoU results start to degrade, sometimes getting
worse than those obtained after a single round of training. Explaining this effect is not
straightforward: given that target labels on round 4 are superior to those used on round
3 in both IoU and Precision, we would expect to either observe improved or plateauing
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Training/Validation
Labels

Test IoU
Test

Precision
Test Recall

Fully-Supervised U-Net ground truth 94.12% 97.26% 97.27%
Fully-Supervised U-Net + CutMix ground truth 94.54% 98.37% 94.27%

Unsup. Domain Adaptation [Hof+16] synthetic data 70.40% not reported not reported
Distant Supervision [TSK17] image labels 80.00% not reported not reported
Superpixel Clustering [Tsu+18] no training 79.00% 87.78% 89.24%
SegNet (repr. from [Tsu+18]) pseudo-labels [Tsu+18] 81.30% 89.36% 90.15%

U-Net (no augmentation)
Round 1 pseudo-labels [Tsu+18] 81.85% 90.65% 89.76%
Round 2 output of round 1 81.79% 89.53% 90.80%
Round 3 output of round 2 81.86% 90.15% 90.27%
Round 4 output of round 3 81.82% 90.11% 90.25%

U-Net + MixUp
Round 1 pseudo-labels [Tsu+18] 81.89% 91.14% 89.31%
Round 2 output of round 1 81.97% 90.89% 89.60%
Round 3 output of round 2 81.62% 90.13% 89.97%
Round 4 output of round 3 81.45% 89.91% 90.02%

U-Net + Color-Flip-Crop
Round 1 pseudo-labels [Tsu+18] 81.99% 88.80% 91.23%
Round 2 output of round 1 82.12% 89.71% 90.64%
Round 3 output of round 2 82.34% 90.75% 90.69%
Round 4 output of round 3 81.91% 90.21% 90.27%

U-Net + CutMix
Round 1 pseudo-labels [Tsu+18] 83.05% 91.19% 90.51%
Round 2 output of round 1 83.58% 91.20% 91.12%
Round 3 output of round 2 83.77% 91.23% 91.29%
Round 4 output of round 3 83.64% 91.75% 90.62%

Table 6.1: Results on the Cityscapes validation set, which we treat as our test set. The best
results for a given data augmentation strategy are underlined, and the best overall results are

reported in bold.

results. Such recursive training strategy has been successfully used in foreground class
segmentation contexts with results improving over more than 10 rounds [Kho+17]. As
opposed to our completely unsupervised approach, the authors of [Kho+17] could exploit
coarser ground truth in the form of bounding boxes in order to refine predictions after
each round. We postulate that the absence of such refinement step in our approach is the
reason we are unable to further leverage recursive training. Designing such a prediction
refinement step will be the topic of future work.

6.5.5 Qualitative Results

We compare the free space estimates from pseudo-labels with the predictions of our best
model on test set samples on Figure 6.5.

The ability of our learned model to generalize past some of the noise present in the
pseudo-labels that were used during training is clearly visible in the first two rows of
Figure 6.5. Indeed, the cars and side walks that were wrongly considered free space in
the pseudo-labels are correctly predicted by our trained model. In addition to its higher
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Precision, our model also has higher IoU and Recall, as illustrated by the near-absence of
orange areas in its predictions.

The third row shows a more contrasted situation. Although our model is able to
cover more free space, it still shows some signs of overfitting to noise in the pseudo-
labels. Shadows are especially problematic because they are likely to impact the superpixel
segmentation that the pseudo-labels are based on, resulting in missed free space areas such
as the one present in front of the cyclist. Since this effect happens fairly consistently over
the training set, our model is incapable of completely addressing it.

Finally, the fourth row illustrates another partial failure of our model in a particularly
crowded scene. Compared to the corresponding pseudo-labels, the trained model correctly
rejects pedestrians, but is unable to produce a clean segmentation around them and
considers the pavement as occupied space. Although the prediction still contains errors,
we note that red areas in our prediction are much more acceptable from a semantics
point-of-view than the ones from the corresponding pseudo-labels.

6.6 Conclusion

In this work, we investigate different pseudo-supervised training strategies for teaching a
neural network to predict free space from images taken with a single road-facing camera.
Our models are trained using pseudo-labels that are generated without human interven-
tion, and we investigate the impact of recursive training with several data augmentation
schemes. We show that the CutMix augmentation is particularly efficient for free space
estimation, especially when combined with recursive training. We benchmark our re-
sults on the Cityscapes dataset and improve over unsupervised and pseudo-supervised
baselines, reaching 83.64% IoU (+2.3%), 91.75% Precision (+2.4%) and 91.29% Recall
(+0.4%). Our best model obtains 88.8% of the IoU, 94.3% of the Precision and 93.1% of
the Recall of the fully-supervised competitor that trains from expensive pixel-wise labels
without CutMix. Finally, we show that simple recursive training is limited in its ability
to increase performances, and suggest directions to improve the approach.
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Pseudo-Labels Predictions

Figure 6.5: Qualitative results from the test set obtained from a U-Net trained with
CutMix for 4 rounds. Predictions are color-coded using the ground truth: green and
red respectively corresponds to correct and incorrect predictions, orange represents
missing free space, and areas that are ignored at evaluation time are denoted in blue

(see Section 4.4.2).
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Chapter 7

Improving Pseudo-labels Generation
for Free Space Estimation

7.1 Introduction

This chapter presents the first-half of the following article, published in the IEEE Robotics
and Automation Letters, and presented at the IEEE IROS 2022 conference. The second
half is covered in Chapter 8.

François Robinet, Yussef Akl, Kaleem Ullah, Farzad Nozarian, Christian Müller, and
Raphaël Frank. “Striving for Less: Minimally-Supervised Pseudo-Label Generation for
Monocular Road Segmentation”. In: IEEE Robotics and Automation Letters (2022),

pp. 1–7. doi: 10.1109/LRA.2022.3193463

Like the previous two chapters, this chapter studies pseudo-supervised monocular free
space segmentation. In Chapter 5, we examined how the training strategy could be
adapted to use (Stochastic) Co-Teaching in order to explicitly cope with noise present
in pseudo-labels. In Chapter 6, we proposed to combine the Cutmix and CFC data
augmentation strategies with a recursive training scheme in order to further improve
performance. While Chapters 5 and 6 relied on approximate labels obtained by superpixel
clustering as described in Section 4.3, this chapter introduces a novel way of computing
free space pseudo-labels.

We propose a practical and generic approach based on task-specific feature extraction.
Building on recent advances in monocular depth estimation models, we process predicted
dense depth maps to estimate pixel-wise road-plane distance maps. These maps are then
used to generate pseudo-labels for a road segmentation scenario. This pseudo-labeling
pipeline reaches state-of-the-art IoU (0.8529), while reducing complexity and computa-
tions compared to existing approaches. Although we test our work on road segmentation
only, the proposed method is generic enough to apply to other less constrained-settings,
such as indoor and outdoor ground robot navigation.

https://doi.org/10.1109/LRA.2022.3193463
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7.2 Related Work on Pseudo-labels Generation

Related work on free space segmentation has already been presented in Section 4.2. In
this section, we specifically focus on methods that rely on generating approximate pseudo-
labels using prior knowledge about road geometry or semantics. These approximate road
masks can then be used as targets to train a statistical model to generalize past the noise
that they contain.

One successful example, and an inspiration for this work, is the use of the v-disparity
algorithm [LAT02]. This method uses disparity maps to estimate a flat road plane by mak-
ing the generic assumption that the road-camera distance linearly increases as the road
recedes to the horizon. Two main drawbacks prevent the direct use of the v-disparity
approach in practical applications: (1) the assumption of a perfectly planar road is some-
times violated in practice and, (2) the reliance on very high quality disparity maps makes
this method very sensitive to errors in these inputs. Similar to prior work, we use this
technique to generate approximate road masks, before training a deep neural network to
generalize past the noise they contain [HAS16; MUT18].

Our work differs in that we propose to approximate these disparity maps using a
monocular depth estimation network which can be trained without stereo cameras or
supervision [God+19]. More direct use of depth measurements can also be beneficial,
as shown through the use of RGB-D inputs to improve performance in indoor percep-
tion [WSL19]. Also exploiting geometric information present in depth maps, work from
Seichter et al. uses a trained network specifically designed to extract features from RGB-D
images by fusing depth feature maps at various stages of encoding [Sei+21].

Rather than explicitly relying on scene geometry, another successful method is to iden-
tify the road by over-segmenting frames into superpixels and extracting feature vectors for
each superpixel using a network trained for generic image classification. Superpixels can
then be clustered in feature-space before using a spatial prior to identify the cluster cor-
responding to the road [Tsu+18; Rob+22a; RF22]. This Superpixel Clustering approach
was covered in greater details in Section 4.3.

Our unsupervised approach unifies the geometrical and semantic approaches by com-
bining features extracted from a v-disparity representation with semantic cues obtained
from over-segmenting the RGB space into superpixels.

7.3 Methodology

In this section, we start by detailing how we obtain our dense Road Plane Distance (RPD)
maps. We then show how we leverage these estimated distances to obtain pseudo-labels,
which can then be used to train predictive models.
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(a) disparity (b) v-disparity

(c) ground plane estimate(d) RPD & estimated horizon

Figure 7.1: Estimation of Road Plane Distance (RPD) from dense disparity maps using robust
line fitting in v-disparity space.

7.3.1 Estimating Road Plane Distance (RPD)

To estimate the road plane, we rely on the v-disparity algorithm, which was first proposed
in the context of obstacle detection [LAT02]. The algorithm does not operate on raw RGB
images, but instead takes dense disparity maps as inputs. Rather than relying on depth
reconstruction using stereo pairs [Hir08; MUT18], we propose to use a monocular depth
estimation network to estimate such disparity maps from a single view of the scene.
For this purpose, we have chosen a Monodepth2 network [God+19] that was trained
on the KITTI dataset [GLU12] without any ground truth labels, using Structure-from-
Motion [Zho+17].

Starting from a disparity map with dimensions (H,W ) in Figure 7.1(a), a v-disparity
map with dimension (H,B) is obtained by creating aB-bin histogram of disparity values in
each row, as shown on Figure 7.1(b). The road detection procedure builds on the following
intuition: oblique planes in the disparity input are mapped to straight lines in v-disparity
space. Assuming that free space is the dominant planar region in the disparity input,
one can therefore approximate it through line-fitting in v-disparity space. This process is
illustrated on Figure 7.1(c). Since obstacles appear as vertical lines in v-disparity space,
it is important to filter data before attempting line fitting. We follow [HAS16] and only
keep bin values belonging to the 95% percentile in each row. Since the road plane maps
to a line in v-disparity space, the intercept of that line corresponds to an estimate of the
horizon line in the original image. Exploiting prior knowledge about camera placement,
we further restrict the area of interest to only match common horizon lines appearing on
the frame between 0.8 and 0.4 relative heights. We fit the filtered v-disparity points using
RANSAC linear regression [FB81].

As opposed to prior work [LAT02; MUT18; HAS16], we do not back-project the fitted
plane to the disparity image by reverting the histograms to obtain a road plane estimate.
Rather, for each pixel in the disparity space, we estimate its elevation relative to the
ground plane by computing the horizontal distance between its v-disparity projection and
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the fitted ground line. We call the result a Road Plane Distance map (RPD) and represent
it on Figure 7.1(d).

7.3.2 From RPD Maps to Pseudo-labels

In this section, we explain our use of RPD maps to generate approximate pseudo-labels
of the road class. Our unsupervised pseudo-label generation method is illustrated on
Figure 7.2.

Superpixel cues Since object parts that touch the ground will contain low RPD val-
ues near the ground, directly thresholding RPD values cannot result in precise class
boundaries. Instead, we rely on superpixel segmentation in RGB space to recover crisp
boundaries. For a given RGB input, we generate a normalized RPD map and compute a
superpixel segmentation using the Felzenszwalb method with a scale of 50 and a minimal
size of 500 pixels [FH04]. We then aggregate the RPD values over each RGB superpixel
using its 90% RPD quantile. We select the 90% quantile rather than the maximum value
in an effort to capture the highest RPD values without being overly affected by possible
outliers. An analysis of the impact of quantile choice is provided in Section 7.5.3.

Adaptive RPD thresholding In order to obtain pseudo-labels, we apply a threshold
on superpixel aggregated RPD maps. Rather than choosing a fixed threshold to apply
over all frames, we propose an adaptive procedure based on the distribution of RPD values
in each frame. We make the assumption that most road pixels lie in the lower half of the
frame, and compute a frame-specific threshold based on their distribution. We compute a
smooth approximation of the distribution of RPD values in the lower portion of the frame
using gaussian kernel density estimation. Since road superpixels have uniform and low
RPD values, they will tend to form the largest peak in this distribution, and we identify
the threshold as the first local minimum following this peak. In order to obtain our final
pseudo-labels, we also remove any pixel lying above the estimated horizon from the road
prediction.

Pseudo-supervised training We use the pseudo-labels as targets to train a model to
segment the road directly from an RGB input. Recent work has shown that deep neural
networks trained via stochastic gradient descent exhibit surprising robustness to noise in
their training targets [LSO20], and such procedure has repeatedly been proven beneficial
to road segmentation [MUT18; Tsu+18; RF22; Rob+22a].
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Road Plane Distance (RPD)

Pseudo-Label

90% Quantile Superpixel RPD

RGB Superpixels

Figure 7.2: Unsupervised pseudo-labels generation. RPD quantiles are computed over each
RGB superpixels, and the result is thresholded and filtered to obtain a road estimate.
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(a) Superpixel Aggregated RPD

(b) Adaptive Threshold Selection

(c) Pseudo-label

Threshold

Figure 7.3: Adaptive thresholding procedure.

7.4 Experimental Setup

To allow for fair comparison and analysis of the impact of using our pseudo-labels com-
pared to existing ones, all our experiments use the same architecture as in our Co-Teaching
and data augmentation experiments from Chapters 5 and 6. We again rely on a U-Net
architecture based on a ResNet18 residual network backbone [RFB15; He+16]. The unsu-
pervised and fully-supervised models are trained to predict road masks from RGB frames
and all have 14.3M parameters.

We train randomly initialized models to minimize a binary cross-entropy loss using
a batch size of 4. We set an initial learning rate of 10−4 and decay it by half when the
training loss plateaus for at least 25 epochs. We train our models on a single NVIDIA
V100 for up to 500 epochs, with an early stopping strategy that halts training when the
validation loss has not improved by at least 0.0003 for 75 consecutive epochs.

We use the Cutmix data augmentation strategy detailed in Section 6.3.1 for all of our
models. For models that use RGB as inputs, we also apply the Color-Crop-Flip (CFC)
augmentation strategy, also described in Section 6.3.1. CFC applies a color jitter, takes a
random crop of appropriate aspect ratio, and randomly perform an horizontal flip of the
input. Each augmentation occurs with 50% probability.

For each experiment, we select the model that minimizes the validation loss. For
computational reasons and to match the Monodepth2 input shape, we use a 192 × 640
input resolution in all experiments. Outputs are however re-scaled using nearest neighbor
interpolation in order to evaluate metrics in the original 1024× 2048 resolution.
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7.5 Evaluation & Results

Like in previous chapters, we evaluate our method using the Cityscapes dataset described
in Section 4.4.1 to be able to compare it to existing work. To obtain a complete picture
of prediction quality, we measure Intersection-over-Union (IoU), Precision and Recall.
As in the official Cityscapes benchmark, the metrics are computed using an evaluation
mask that ignores pixels labeled as void. The complete evaluation procedure is detailed
in Section 4.4.2. This section outlines the set of experiments carried out to benchmark
the proposed method.

7.5.1 Results

Road Classes: only road IoU Precision Recall

Superpixel Clustering [Tsu+18; RF22] 0.8152 0.8854 0.9138
Co-Teaching Superpixel Clustering [Rob+22a] 0.8261 0.9093 0.9027
Cutmix Superpixel Clustering [RF22] 0.8377 0.9193 0.9129
Ours (unsupervised) 0.8529 0.8827 0.9623

Road Classes: road, ground & parking IoU3 Precision3 Recall3

Stereo v-disparity [MUT18] 0.8001 0.9283 0.8529
Ours (unsupervised) 0.8600 0.8943 0.9595

Table 7.1: Test set results for unsupervised road segmentation. The second part of the table
evaluates using a different definition of road that includes the road, parking and ground classes
to allow comparison with [MUT18]. Metrics are suffixed to emphasize that three classes are

used as part of the road in that second scenario.

In Table 7.1, we compare our model trained on unsupervised pseudo-labels (described
in Section 7.3.2) to other recent unsupervised methods. All approaches use a similar
strategy of generating pseudo-labels before training a neural network to generalize part
of the label noise away.

The Stereo v-disparity method [MUT18] is closest in spirit to our approach since
it also exploits disparity maps. The notable differences are that they obtain disparity
maps through stereo depth reconstruction rather than from a monocular depth estimation
network, and they simply threshold in v-disparity space to obtain a road mask, while we
use cues from the RGB image in the form of superpixel segments. The other three
methods [Tsu+18; Rob+22a; RF22] rely on the Superpixel Clustering pseudo-labeling
strategy, and were respectively presented in Sections 4.3, 5.3 and 6.3.

Our method does not need stereo pairs, but still achieves the highest IoU (0.8529) and
Recall (0.9623). The large increase in Recall however comes at the cost of Precision, as
expected for a method that detects the ground plane rather than the road. The source of
imprecision is indeed mostly attributable to ground-level pixels being wrongly classified
as road when they are actually sidewalks or parking. When including such flat classes
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Superpixel
aggregation

Adaptive
thresholding

IoU Precision Recall

– – 0.7456 0.7535 0.9875
✓ – 0.8432 0.8683 0.9664
✓ ✓ 0.8529 0.8827 0.9623

Table 7.2: Ablation study of trained models test results.

from Cityscapes as part of our definition of the road, the Precision rises to over 98%.
This shows the potential of our approach for different robotics applications where any flat
surfaces can be traversed.

To identify the contributions of superpixel aggregation and adaptive thresholding,
Table 7.2 presents an ablation study. In the absence of adaptive thresholding, a single fixed
threshold is selected for all the frames by visually examining RPD maps for 10 random
training frames. The manual threshold is set to 0.075 when no superpixel aggregation is
used, and to 0.1 when it is enabled. Note that although this manual selection technically
introduces human-supervision, it is only used for investigating the impact of adaptive
thresholding. Due to noise in the estimated depth and imprecisions in the road plane fit
used to build RPD maps, the absence of superpixel aggregation causes a severe lack of
Precision.

7.5.2 Inference Time

The models used in our unsupervised and semi-supervised methods are also computa-
tionally efficient, since they use the same architecture but a lower input resolution of
192×640 compared to the 512×1024 inputs used in other approaches [Tsu+18; Rob+22a;
RF22; MUT18]. Table 7.3 illustrates the differences in both inference time and Multiply-
Accumulate operations (MACs) required in a forward pass for a single input frame. The
inference times include the copy of the frame to GPU memory and of the result back to
CPU memory.

Input
Resolution

Inference
Time

GMACs

192× 640 3.56 ms± 5.65 µs 10.16
512× 1024 10.42 ms± 4.29 µs 43.37

Table 7.3: Inference times and Mutiply-Accumulate operations on a NVIDIA Tesla V100. For
time measurements, we report mean and standard deviation over 1000 runs.

7.5.3 Impact of RPD Quantile Choice

The unsupervised pseudo-label generation described in Section 7.3.2 relies on RGB super-
pixel cues to reach the best performance. The values of RPD maps are aggregated over
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RGB superpixels using a quantile function in order to discard some of the noise. In Table
7.4, we study the impact of changing the quantile value on IoU, Precision and Recall.
Note that these results are for raw pseudo-labels. They can therefore not be directly
compared to the IoU results presented in Table 7.1 and Table 7.2, which correspond to
a trained model. They are however indicative of relative performance between quantile
choices. Since evaluating different quantile choices on the test set technically constitutes
a fit, this analysis is only provided for additional insights. The decision to use the 90%
quantile in our methodology was made prior to such evaluation, by visually inspecting
the RPD maps of a few random training frames to decide on an appropriate value.

The exact choice of the quantile does not have a large impact on IoU, but influences
the Precision-Recall trade-off, with lower values favoring Recall since more superpixels
tend be classified as part of the road. The choice of the 100% quantile is equivalent to
aggregating a superpixel by its maximum RPD value, and is detrimental to IoU since it
is highly sensitive to large RPD outliers.

RPD Quantile IoU Precision Recall

50% 0.7836 0.8140 0.9532
60% 0.7890 0.8283 0.9422
70% 0.7939 0.8307 0.9471
80% 0.7984 0.8357 0.9475
85% 0.7983 0.8441 0.9360
90% 0.7957 0.8548 0.9214
95% 0.7963 0.8653 0.9104
100% 0.7625 0.8661 0.8779

Table 7.4: Test results for unsupervised raw pseudo-labels using adaptive thresholding with
different quantile values.

7.6 Conclusion

This chapter investigates a novel unsupervised pseudo-labeling strategy in order to train a
neural network to segment the road using images captured by a single road-facing camera
with no manual annotations.

In order to minimize the labeling efforts required to train these models, we devise a
novel feature extraction method based on the v-disparity algorithm. To the best of our
knowledge, our approach is the first to compute approximate v-disparity maps using a
depth prediction network, as well as to use them to compute dense Road Plane Distance
(RPD) maps.

Our approach fuses the geometrical information from RPD maps with semantical cues
obtained from over-segmenting the RGB input into superpixels. We obtain pseudo-labels
by combining RPD maps and RGB superpixels, and these are then used as targets to
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train a neural network in a completely unsupervised way. Unlike previous work, our
unsupervised method does not require the use of stereo-pairs but still reaches state-of-
the-art results while also being less computationally-intensive.

The lack of Precision of RPD-based pseudo-labels is attributable to the fact that
not all flat surfaces (e.g. sidewalks, parkings, ...) should be considered free space in an
autonomous driving scenario. We expect that this shortcoming would not be so important
in other scenarios such as indoors perception, or robotic navigation in less unconstrained
outdoor environments such as buildings, parks, fields or forests.

While this chapter discusses the direct use of RPD maps for unsupervised road seg-
mentation, Chapter 8 will show how they can be used as task-specific features in a semi-
supervised setting, and explain how the addition of a minimal amount of labels can help
overcome limitations in Precision.
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Chapter 8

Minimally-Supervised Pseudo-Labels
for Free Space Estimation

8.1 Introduction

This chapter presents the second-half of the following article, accepted for publication in
the IEEE Robotics and Automation Letters, and for presentation at the IEEE IROS 2022
conference. The first half was covered in Chapter 7.

François Robinet, Yussef Akl, Kaleem Ullah, Farzad Nozarian, Christian Müller, and
Raphaël Frank. “Striving for Less: Minimally-Supervised Pseudo-Label Generation for
Monocular Road Segmentation”. In: IEEE Robotics and Automation Letters (2022),

pp. 1–7. doi: 10.1109/LRA.2022.3193463

To be able to safely navigate the world, autonomous robots have to be capable of per-
ceiving their environment to detect traversable free space. Like in previous chapters, we
focus here on road detection for vehicles equipped with a single forward-facing camera.
While this task has traditionally been solved using supervised segmentation methods,
these techniques suffer the drawbacks of laborious labeling cost (1.5h/frame for fine an-
notations [Cor+15]), as well as test-time distribution shift due to the wide variety of
environments and weather conditions [Tre+18]. To alleviate these issues, the community
has recently focused on unsupervised and semi-supervised alternatives.

Although unsupervised approaches lead to respectable results, they are not reliable
enough to enable the safe operation of autonomous agents [HAS16; Tsu+18; MUT18;
Rob+22a; RF22]. Semi-supervised methods can offer a practical compromise by approach-
ing the performance of full supervision while training on restricted subsets of manually-
labeled data. Such performance is usually achieved by exploiting unlabeled data through
self-supervised consistencies or pseudo-labeling [Che+20a; Hoy+21; TV17].

The work presented in this chapter explores this trend by expanding on the RPD
pseudo-labeling framework presented in Chapter 7, in order to incorporate a restricted
subset of ground truth labeled samples. Our method reduces the quantity of labeled data

https://doi.org/10.1109/LRA.2022.3193463
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required by exploiting prior knowledge of road semantics as well as recent advances in
monocular depth estimation [God+19].

Relying on the RPD maps described in Chapter 7, we design a semi-supervised exten-
sion, which uses as little as 1% (respectively 10%) of ground truth data while reaching
96.1% (resp. 97.8%) of the IoU obtained by a comparable fully-supervised model.

As discussed in Section 7.5, the unsupervised RPD-based pseudo-labels described in
the previous chapter are only able to evaluate whether space is physically traversable,
but cannot deal with traffic rules. For example, ground-level sidewalks or vegetation are
often mislabeled as the road in our unsupervised pipeline. This type of error is largely
fixed by labeling a small amount of ground truth samples in the semi-supervised approach
described in this chapter, which results in a Precision increase of +9.08% when labeling
only 29 frames.

While our work focuses on urban scenes, the use of an unsupervised monocular depth
network and RPD maps are generic enough to allow the same techniques to be used in
other robotic navigation scenarios, such as indoors or less-constrained outdoor environ-
ments.

The content of this chapter is organized as follows: In Section 8.2, we review existing
works on semi-supervised road segmentation. In Section 8.3, we introduce our method for
computing our semi-supervised extension to the RPD-based method proposed in Chapter
7. Our experiments are detailed in Section 8.4 and we analyze their results in Section 8.5.
Finally, we summarize our contributions in Section 8.6.

8.2 Related Work on Semi-Supervised FSE

This section presents a brief overview of road segmentation approaches that learn pixel-
wise free space representations from data. While related works rely on video sequences to
learn sparse point clouds [Dav+07], or to segment obstacle footprints using structure-from-
motion [Wat+20], we focus our attention on unsupervised and semi-supervised methods
that learn road masks using single images.

Recent advances in semi-supervised segmentation can mainly be divided in two cate-
gories of approaches: consistency training and self-training using pseudo-labeling.

Consistency Regularization Consistency regularization obtains a loss by making the
assumption that the output of a model should be similar for perturbations of the same
input that do not affect its semantics. Proposed approaches differ in the perturbations of
the input that they use, or in the definition of similarity that they optimize for. Barlow
Twins [Zbo+21] is a recent method that attempts to make learned embeddings for two
distinctly distorted inputs be similar but non-redundant, by making their cross-correlation
matrix be close to the identity matrix. Another similar approach is SimCLR, where two
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random augmentations are computed for the same input, but a contrastive loss is used
for training the features encoder [Che+20b]. Other examples that fall into this category
are Unsupervised Data Augmentation [Xie+19], Virtual Adversarial Training [Miy+17]
and Cutmix [Yun+19].

Pseudo-labeling The semi-supervised part of this work adopts the second approach of
self-training with pseudo-labels, in particular through the use of a mix of ground truth
labels and noisy pseudo-labels that are generated for unlabeled data [Che+20a; Hoy+21].
Recent research has shown that over-parameterized neural networks can generalize past
some of the label noise using Stochastic Gradient Descent (SGD) schemes combined with
early stopping [LSO20], but more advanced schemes have been devised to explicitly deal
with this noise, such as Mean Teacher [TV17] and Co-Teaching [Han+18]. For a com-
prehensive overview of semi-supervised techniques that cope with noisy labels in image
analysis, we refer the reader to the survey in [Kar+20].

Note that these two categories of approaches are not necessarily mutually exclusive.
FixMatch is a recent attempt at combining the ideas of consistency regularization and
pseudo-labeling [Soh+20].

8.3 Methodology

Although RPD maps are useful to detect the ground plane, the road class is more restric-
tive since it should not contain things like sidewalks or grass patches, even though they
might lie in the same plane. Since RPD maps do not contain this information, we propose
to combine them with RGB frames and to learn from a minimal number of ground truth
annotations.

8.3.1 Pseudo-Label Generator (PLG)

To generate pseudo-labels in the semi-supervised scenario, we train a PLG network to
predict road masks from RPD maps and RGB frames. We concatenate them and use
them as inputs to our PLG, which will allow it to learn to segment the road from only
dozens of ground truth samples. This process is illustrated on Figure 8.1.

8.3.2 Training from Semi-Supervised Pseudo-Labels

As in the unsupervised case from Section 7.3.2, an additional model can be trained using
the semi-supervised pseudo-labels as targets in order to obtain road masks from RGB
inputs. For frames for which ground truth was used at pseudo-label generation time,
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Road Plane Distance (RPD)
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RPD Generation 
(Chapter 7)

Figure 8.1: Semi-supervised pseudo-labels generation procedure. We train a pseudo-label
generator to predict pseudo-labels using RGB frames and RPD maps. The network learns using

a small amount of ground-truth annotated frames.
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we also use pixel-wise ground truth as our target. Details about the model and training
procedure used are available in Section 8.4.2.

8.4 Experimental Setup

This section outlines the set of experiments carried out to benchmark the proposed
method. To allow for fair comparison with the results presented in Chapters 4 to 7,
we again evaluate our method on the Cityscapes dataset described in Section 4.4.1, using
IoU, Precision and Recall. A mathematical description of these metrics, and which pixels
are ignored during evaluation is given in Section 4.4.2. This section details our network
architecture and training procedure.

8.4.1 Network Architectures

Competing semi-supervised approaches are often focused on generic semantic segmen-
tation rather than road segmentation, or use other datasets than Cityscapes as bench-
marks [DHS15; Xie+20; PC15; Dur+17; Cha+20]. The few semi-supervised approaches
that publish metrics for the road class use a wide variety of network architectures, input
resolutions, computational requirements, annotations (all classes or road only) and data
splits, making direct comparison difficult. To allow for fair comparison and analysis of
the impact of using semi-supervised pseudo-labels instead of training from only limited
ground truth, all our experiments use the same architecture.

Recent work has shown that properly tuned standard U-Nets can outperform more
advanced variants in many segmentation scenarios [Ise+18], and we therefore opt for a
standard U-Net architecture based on a ResNet18 residual network backbone [RFB15;
He+16]. The fully-supervised and semi-supervised models trained to predict road masks
from RGB frames all have 14.3M parameters.

We also use the same architecture for the semi-supervised PLG from Figure 8.1, but
we slightly adapt its first layer to accept the additional channel from RPD in addition to
the three RGB channels.

8.4.2 Training Procedure

We train randomly initialized models to minimize a binary cross-entropy loss using a
batch size of 4. We set an initial learning rate of 10−4 and decay it by half when the
training loss plateaus for at least 25 epochs. We train our models on a single NVIDIA
V100 for up to 500 epochs, with an early stopping strategy that halts training when the
validation loss has not improved by at least 0.0003 for 75 consecutive epochs.
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We use the Cutmix data augmentation strategy detailed in Section 6.3.1 for all of our
models. For models that use RGB as inputs, we also apply the Color-Crop-Flip (CFC)
augmentation strategy, also described in Section 6.3.1. CFC applies a color jitter, takes a
random crop of appropriate aspect ratio, and randomly perform an horizontal flip of the
input. Each augmentation occurs with 50% probability.

For each experiment, we select the model that minimizes the validation loss. For
computational reasons and to match the Monodepth2 input shape, we use a 192 × 640
input resolution in all experiments. Outputs are however re-scaled using nearest neighbor
interpolation in order to evaluation metrics in the original 1024× 2048 resolution.

8.5 Results

Cityscapes provides pixel-wise ground truth annotations for our 2380 training and 595
validation frames, which allows us to examine the fully-supervised scenario in the first
section of Table 8.1. Our supervised baseline that uses 100% of the ground truth reaches
an IoU of 0.9454. Using a higher input resolution, a larger model, and pseudo-labels
generated for additional frames not included in our dataset, the Naive-Student Video
Sequence model is able to further improve IoU to 0.9882 [Che+20a]. We do not include
the latter approach in Table 8.1 since it uses ground truth annotations for all Cityscapes
classes on 2975 frames and pseudo-labels generated for an additional 109 thousand frames,
making a direct comparison with our results impossible.

The second and third sections of Table 8.1 present models trained on a small fraction
of ground truth labels, with and without adding pseudo-labels for the remaining frames.
Using 10% annotated samples, our semi-supervised model is able to achieve an IoU of
0.9332. This corresponds to a +3% increase over a supervised baseline trained on the
same ground-truth frames without pseudo-labels. When dropping the fraction of labeled
samples to 1%, our proposed method improves IoU by +7.25% compared to its supervised
counterpart and reaches 0.9063 IoU.

These results motivate a pragmatic approach to data annotation for free-space seg-
mentation tasks: even a minimal labeling effort can greatly improve results and enable
rapid prototyping for robotics applications. Indeed, annotating only 29 frames allows to
increase Precision by +8.74% and IoU by +5.34% over the best unsupervised method of
Table 7.1. Although annotating more data is always beneficial, it is also important to
notice that semi-supervised models using 1% and 10% of labeled data respectively achieve
95.9% and 98.7% of the IoU obtained using a comparable model trained on 100% of the
ground truth.

To assess the impact of using both RGB frames and RPD maps as inputs to our
semi-supervised PLG, we conduct an ablation in Table 8.2. The results shows that using
RGB alone decreases IoU by 8.7% when using 1% labeled frames. The impact of RPD
maps is less extreme when using 10% ground truth annotations, which is expected since
the model can learn to extract RPD information from RGB frames alone if given enough
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GT % (frames) PLG pseudo-labels IoU Precision Recall

Supervised baseline 100% (2975) 0 0.9454 0.9837 0.9427

Supervised baseline 10%
(297)

0 0.9032 0.9614 0.9353
Ours (semi-supervised) 2678 0.9332 0.9807 0.9493

Supervised baseline 1%
(29)

0 0.8338 0.9174 0.9009
Ours (semi-supervised) 2946 0.9063 0.9701 0.9310

Table 8.1: Test set results for fully-supervised and semi-supervised road segmentation. The
best results for each level of supervision are reported in bold.

GT %
PLG Inputs

IoU Precision Recall
RGB RPD

1%
✓ – 0.8193 0.9277 0.8743
– ✓ 0.8600 0.9274 0.9218
✓ ✓ 0.9063 0.9701 0.9310

10%
✓ – 0.9149 0.9665 0.9435
– ✓ 0.9006 0.9645 0.9303
✓ ✓ 0.9332 0.9807 0.9493

Table 8.2: Test results of our semi-supervised models using different PLG inputs.
The best results for a given level of supervision are reported in bold.

annotations. Even in that scenario, adding them still increases IoU by 1.8% over RGB
frames only. Table 8.2 also shows that using RPD maps alone does not yield the best
results. This is not surprising, since RPD values are approximate and do not contain
information to distinguish between the ground and object parts lying close to it.

8.6 Conclusion

This chapter investigates a semi-supervised pseudo-labeling strategy to train a neural
network to segment the road using images captured by a single road-facing camera with
little manual annotations.

In order to minimize the labeling efforts required to train models, we rely on a novel
semi-supervised pseudo-labeling pipeline. Like in Chapter 7, we compute approximate
v-disparity maps using a depth prediction network and use them to derive dense Road
Plane Distance (RPD) maps. These RPD maps contain useful information for the road
segmentation task.

By combining RPD maps with features extracted from a depth estimation network
and using them to train pseudo-label generators with minimal supervision, we are able
to greatly improve IoU over the unsupervised case. The semi-supervised results obtained
using 1% (resp. 10%) of ground truth labels improve IoU by 5.3% (resp. 8%) over the
unsupervised approach. These results correspond to 95.9% (resp. 98.7%) of a comparable
fully-supervised model.
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By relying on some ground truth annotation, the semi-supervised pipeline is also able
to address the main drawback of the unsupervised RPD-based approach presented in
Chapter 7: its lack of Precision due to an inability to distinguish between physically and
legally traversable space. By labeling only 1% of ground truth samples, we can observe a
Precision increase of +8.7%.

Considering that 1% of the Cityscapes annotations correspond to only 29 frames, these
results motivate a pragmatic approach to labeling for segmentation tasks: even minimal
labeling efforts can greatly improve results.

Finally, although this work emphasizes an application to road segmentation, our ap-
proaches are not specific to urban scenes. Indeed, the depth network used for RPD com-
putation and features extraction in this work can be trained without any label on other
datasets, enabling future work to explore applications to monocular robots operating in
less-contrained indoor and outdoor environments.
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Chapter 9

Conclusion

To conclude this dissertation, we will review our findings and contributions through the
lens of the research questions formulated in Section 1.5, before sharing further research
directions.

9.1 Summary & Contributions

9.1.1 End-to-End Steering

End-to-End Steering consists in learning to predict steering angle from road-facing camera
frames. Imitation learning tackles this task by recording synchronized camera frames and
steering angles during demonstrations from a human expert. While existing work tackles
the task of imitating human reactions given only camera frames at training time, our
work explored another possibility in order to answer the following question.

Research Question 1: Can imitation learning systems for end-to-end steering benefit
from privileged information available at no additional labeling cost?

We addressed the first research question in Chapter 3 by designing and evaluating
an end-to-end control system that relies on privileged information. We showed that
pixel-relevance heatmaps obtained using VisualBackProp can be used in conjunction with
approximate lane masks to penalize the model for looking at irrelevant areas during
learning. This Distraction Loss term is added to the standard L2-loss as a regularizer.
We obtained approximate masks using a LaneNet model that was trained on a different
dataset, which shows that perfect lane masks are not needed for this method. The use of
VisualBackProp also has the benefit of not adding any additional learnable parameter to
the system. Our Distraction Loss benefits offline metrics across the board, with progress
observed for mean squared error, mean absolute error and quantized classification error.
This shows that imitation learning systems for end-to-end steering can indeed benefit
from privileged information such as pixel-relevance heatmaps at training time.
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9.1.2 Unsupervised Free Space Estimation

Pseudo-labels
GT%

(frames)
Section

Co-
Teaching

Recursive
Training

Cutmix IoU Precision Recall

–
100%
(2975)

4.5.1 – – – 0.9412 0.9726 0.9727

6.5.1 – – ✓ 0.9454 0.9837 0.9427

Superpixel
Clustering

0%
(0)

4.5.3 – – – 0.8152 0.8854 0.9138

5.3 ✓ – – 0.8261 0.9093 0.9027

6.3 – ✓ ✓ 0.8377 0.9193 0.9129

Superpixel RPD 0% (0) 7.3 – – ✓ 0.8529 0.8827 0.9623

Semi-supervised
RPD-based PLG

10% (297) 8.3 – – ✓ 0.9332 0.9807 0.9493

1% (29) 8.3 – – ✓ 0.9063 0.9701 0.9310

Table 9.1: Summary of our free space estimation results. The ”Section” column indicates the
section number where the method is presented in details.

Free space segmentation has traditionally been approached using supervised segmen-
tation techniques. Although effective, these techniques require vast amounts of pixel-wise
annotated frames. Studies have shown that such pixel-level ground truth is significantly
more expensive to craft than image-level labels or bounding boxes [Lin+14]. In addition
to the large labor costs entailed by labeling each frame [Cor+15], such approaches are
held back by the wide variety of environments and lighting conditions that are present at
runtime and need to be captured in training data. This need for ever-larger annotated
datasets makes supervised learning unsuitable for solving this problem, which is why re-
search questions 2 to 4 were aimed at exploring unsupervised free space estimation. The
main results of our free space estimation experiments are summarized in Table 9.1.

Research Question 2: Can the noise present in existing free space pseudo-labels be
explicitly taken into account during training in order to improve generalization?

This second theme was explored in Chapter 5, where we used Co-Teaching to re-
strict training to likely-correct pixels in free space pseudo-labels. Since Co-Teaching was
designed to work on classification problems, we proposed a simple adaptation to segmen-
tation that treats every pixel as a separate sample. The intuition for Co-Teaching is based
on memorization properties of deep neural networks. Although they will eventually over-
fit random noise in their training data, they still tend to learn patterns from clean data
first. To exploit this, Stochastic Co-Teaching probabilistically filters out the pixels that
incur the highest losses. We compared the two Co-Teaching variants against a traditional
training loop, and observed improvements in IoU and Precision in both cases. Stochas-
tic Co-Teaching was the best performer in both the single best student and ensembles
scenarios. Although explicitly dealing with label noise during training can certainly help
improve performances, we also analyzed the limitations of this approach. While the core
assumption of Co-Teaching that clean patterns are learnt first is respected in most of the
dataset, clean-high-loss and noisy-low-loss samples are still observed and limit the impact
Co-Teaching can have.
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Research Question 3: Which data augmentation strategies are most effective for pseudo-
supervised free space segmentation?

In Chapter 6, we explored different data augmentation scenarios for free space esti-
mation, and we analyzed how recursive training impacts performances. We studied the
effect of three distinct data augmentation strategies:

1. MixUp trains models on convex combinations of pairs of samples, resulting in new
training samples that lie between the original pair.

2. Color-Flip-Crop randomly combines the classical augmentation schemes of color
jittering, horizontal flips and crops.

3. CutMix also merges existing samples but overlays them rather than taking convex
combinations, resulting in more locally coherent frames.

We observed that data augmentation is indeed effective at improving pseudo-supervised
training in all cases. In particular, CutMix was particularly effective and improved IoU
by almost 2% over not using any augmentation. Our qualitative analysis confirmed that
a Cutmix-trained model was able to correct some largely wrong pseudo-labels, and also
made errors that were semantically more forgivable. The work presented in Chapter 6
was voted among the best submissions of the BNAIC 2021 conference at which it was
presented, and was selected for a book chapter publication. Our subsequent works build
on these findings by reusing the Cutmix strategy.

Research Question 4: Is is possible to exploit geometrical cues from approximate depth
maps to generate more accurate free space pseudo-labels?

While Chapters 5 and 6 used the existing Superpixel Clustering pseudo-labels, Chapter
7 introduced a novel labeling strategy. We proposed the use of a monocular depth network
to estimate pixel-wise Road-Plane Distances (RPD) using the v-disparity algorithm with
a novel filtering method. We used RPD maps in a pseudo-labeling pipeline to reach
state-of-the-art IoU, with reduced complexity and computations compared to prior work.
Although the results were interesting from an IoU standpoint, our RPD-based labels were
only able to evaluate whether space is physically traversable, but could not deal with
traffic rules. For example, ground-level sidewalks or vegetation were often mislabeled as
the road in our unsupervised pipeline, resulting in degraded Precision. To alleviate this
issue, we proposed to use a restricted subset of ground truth labels in order to learn to
differentiate between physically and legally traversable spaces.

9.1.3 Semi-Supervised Free Space Estimation

After exploring different avenues to improve training and pseudo-labels generation for
unsupervised free space estimation, Chapter 8 went on to explore a more pragmatic ques-
tion:
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Research Question 5: Can using a fraction of ground truth free space frames result in
substantial performance gains?

We investigated a semi-supervised extension to the superpixel generation method de-
scribed in Chapter 7 and found that even minimal labeling efforts could greatly improve
results. Since the pseudo-labels from Chapter 7 were based purely on RPD maps, they
failed to distinguish non-traversable areas that aligned with the road plane. The use
of ground truth labels helped alleviate this issue: we combined RPD maps with RGB
frames and trained a PLG network using the available ground truth. Using as little as 1%
(respectively 10%) of ground truth data, we reached an of IoU of 0.9063 (resp. 0.9332).
These results correspond to 95.9% (resp. 98.7%) of the IoU obtained by a comparable
fully-supervised model, which motivates a pragmatic approach to labeling. Although we
tested our work on road segmentation, this method is generic enough to apply to other
less constrained-settings, such as indoor and outdoor ground robot navigation.

9.2 Future Research Directions in FSE

We conclude this document with a presentation of possible future research directions that
would build on our results. This section is not meant to be exhaustive and only introduces
possible research avenues that we find interesting.

Superpixel-level filtering We presented the Superpixel Clustering method in Section
4.3, and used it to generate pseudo-labels in Chapters 5 and 6. In Chapter 7, we proposed
an alternative pseudo-labeling technique based on geometric cues we obtained from ap-
proximate depth maps. Because both of these schemes rely on segmenting the RGB space
into superpixels before classifying them, mistakes tends to occur in cohesive spatial re-
gions rather than single isolated pixels. In Chapter 5, we attempted to discard individual
noisy pixels at training time using Co-Teaching, but future work could instead investigate
filtering approaches that ignore entire superpixels. One possibility would be to adapt the
Stochastic Co-Teaching that we proposed in Chapter 5 to support this.

Iterative training with refinement Since the output of our models can be seen as
stronger pseudo-labels, another promising research direction would be to iteratively train
models to refine them. This was already partially explored in Chapter 6, but existing
work has shown that refinement steps after each training round can help improve results
[Kho+17; DHS15]. For example, the method presented in [Kho+17] progressively refines
pseudo-labels extracted from bounding box annotations over 10 training rounds with
impressive results. Although most of the ideas are not applicable to the problem of free
space segmentation since bounding boxes cannot accurately capture free space, their use of
a graphical model refinement step could be combined with our work from Chapter 6. One
could also explore the possibility of using bounding boxes for entities that are considered
occupied space, and to exploit that knowledge to improve free space segmentation.
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Exploiting additional sensor modalities One interesting possibility would be to
exploit the precise localization data from GNSS traces present in some datasets, and
to combine it with publicly available map data. Existing work investigates the use of
OpenStreetMap data to extract the road and project it onto training frames by exploiting
the known camera calibration in order to obtain road pseudo-labels [Lad+16], and achieve
reasonable results for the KITTI dataset [GLU12]. This approach could be tried on the
Cityscapes dataset to obtain results that can be compared with more recent literature,
and combined with our approaches in order to improve pseudo-labels.

Leverage temporal sequences The ordered frame sequences typically found in driving
datasets contain rich temporal information that is not exploited by our approaches. Some
recent methods exploit these sequences exclusively at training time, using structure-from-
motion to learn to predict monocular depth maps [Zho+17; God+19] or to segment
obstacle footprints [Wat+20]. However, These methods still use single frames at inference
time. Another line of work uses similar techniques, but focuses on predicting temporally
consistent depth maps in entire videos [Luo+20; Hoy+21]. These concepts could be
implemented to predict temporally consistent free space masks.
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Appendix A

Image Sources

A.1 Images from Introduction

Figure 1.2 is made of the following publicly available images, from left-to-right and top-
to-bottom:

• Cars Road Trip - Lightning McQueen by kurros is licensed under CC BY-NC-SA 2.0,
and available at https://www.flickr.com/photos/49961268@N00/150160407.

• Car by PHOTOPHANATIC1 is licensed under CC BY-NC-SA 2.0, and available
at https://www.flickr.com/photos/65089906@N00/35185475274.

• 2000 Fiat Multipla by harry nl is licensed under CC BY-NC-SA 2.0, and available
at https://www.flickr.com/photos/23363966@N02/13452836975.

• Edinbugh car fog by shannonkringen is licensed under CC BY-SA 2.0, and available
at https://www.flickr.com/photos/18161271@N00/7039623059

• Lower Park Rd car + fog by copperhead103 is licensed under CC BY-NC-ND 2.0,
and available at https://www.flickr.com/photos/26945939@N05/3153701817

• Car Snow by M Bitting is licensed under CC BY-NC-SA 2.0, and available at
https://www.flickr.com/photos/141003241@N08/40140747525

• Image extracted from Assume self-driving cars are a hacker’s dream? Think again
byAlex Hern published by The Guardian, and available at https://www.theguardian.
com/technology/2017/aug/30/self-driving-cars-hackers-security.

https://www.flickr.com/photos/49961268@N00/150160407
https://www.flickr.com/photos/65089906@N00/35185475274
https://www.flickr.com/photos/23363966@N02/13452836975
https://www.flickr.com/photos/18161271@N00/7039623059
https://www.flickr.com/photos/26945939@N05/3153701817
https://www.flickr.com/photos/141003241@N08/40140747525
https://www.theguardian.com/technology/2017/aug/30/self-driving-cars-hackers-security
https://www.theguardian.com/technology/2017/aug/30/self-driving-cars-hackers-security
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[RF21] François Robinet and Raphaël Frank. “Refining Weakly-Supervised Free
Space Estimation Through Data Augmentation and Recursive Training”.
In: Proceedings of BNAIC/BeneLearn 2021. 2021.
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