Pas de texte intégral
Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Analysis and comparison of gait impairments in patients with Parkinson’s disease and normal pressure hydrocephalus using wearable sensors and machine learning algorithms
MAGNI, Stefano; BREMM, René Peter; Lecossois, Sylvie et al.
202219th Biennial Meeting of the World Society for Stereotactic & Functional Neurosurgery (WSSFN 2022)
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
Parkinson's Disease; Wearable Sensors; Machine Learning
Résumé :
[en] Objectives. Gait impairments in patients with Parkinson’s disease (PD) and normal pressure hydrocephalus (NPH) are visually assessed by movement disorders experts for diagnoses and to decide on pharmaceutical and surgical interventions. Despite standardised tests and clinicians’ expertise, such approaches entail a considerable level of subjectivity. The recent development of wearable sensors and machine learning offers complementary approaches providing more objective, quantitative assessments of gait impairments. We aim to employ the data gathered from an inertial measurement unit synchronized with a novel foot pressure sensor embedded in the patient’s shoes to characterize gait impairments. We focus on distinguishing PD from NPH and on assessing gait impairment before and after surgical intervention. Methods. A cohort of 10 PD and 10 NPH patients was assembled and patients performed standardised walking tests. Measurements were performed employing wearable sensors comprising a three-axes gyroscope, a three-axes accelerometer and eight pressure sensors embedded in each patient’s shoe. To analyse the generated data, existing algorithms were implemented and adapted. These allow to compute gait cycle parameters such as step time and metrics characterizing the swing and stance phases. Machine learning algorithms where employed to identify major changes in gait cycle parameters between the two groups of patients, and for individual patients before and after surgical intervention as DBS implantation in PD and Shunt implantation in NPH. Results. The gait impairments of both disease groups were measured and quantified. An algorithm to extract gait cycle parameters from sensors was implemented, tested and employed on such patients. Gait cycle parameters within and between the groups of PD and NPH patients were compared, assessing what gait cycle parameters allow to distinguish between these groups. Gait cycle impairments of patients before and after surgery were compared, assessing the effect of DBS or Shunt implantation and which gait cycle parameters allow to monitor symptoms improvement. Conclusions. Wearable sensors measuring pressure, combined with gait cycle parameters extraction and machine learning algorithms, have a great potential for objective evaluation of gait impairment. In particular, they allow to characterize what differentiate such impairments between PD and NPH patients, and what allow to assess motor symptoms improvement after surgery.
Centre de recherche :
Centre Hospitalier du Luxembourg and Luxembourg Centre for Systems Biomedicine
Disciplines :
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
MAGNI, Stefano ;  University of Luxembourg
BREMM, René Peter ;  Centre Hospitalier du Luxembourg > National Neurosurgery Department
Lecossois, Sylvie;  Centre Hospitalier du Luxembourg > National Neurosurgery Department
He, Xin;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine
Garía Santa Cruz, Beatriz;  Centre Hospitalier du Luxembourg > National Neurosurgery Department
Mombaerts, Laurent;  Centre Hospitalier du Luxembourg > National Neurosurgery Department
HUSCH, Andreas  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Interventional Neuroscience
GONCALVES, Jorge ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Control
HERTEL, Frank ;  Centre Hospitalier du Luxembourg > National Neurosurgery Department
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Analysis and comparison of gait impairments in patients with Parkinson’s disease and normal pressure hydrocephalus using wearable sensors and machine learning algorithms
Date de publication/diffusion :
05 septembre 2022
Nom de la manifestation :
19th Biennial Meeting of the World Society for Stereotactic & Functional Neurosurgery (WSSFN 2022)
Organisateur de la manifestation :
World Society for Stereotactic & Functional Neurosurgery
Lieu de la manifestation :
Incheon, Corée du Sud
Date de la manifestation :
from 04-09-2022 to 07-09-2022
Manifestation à portée :
International
Références de l'abstract :
Abstract not published, conference program including talk title and authors available at: https://www.wssfn2022.org/program/page2.php
Focus Area :
Computational Sciences
Projet FnR :
FNR14772888 - Precision Diagnosis And Therapy With Wearables And Ai In Data Analytics., 2020 (01/11/2020-30/04/2024) - Frank Hertel
Intitulé du projet de recherche :
MoveSenseAI (MSAI)
Organisme subsidiant :
Luxembourg National Research Fund (FNR) and IEE company
Disponible sur ORBilu :
depuis le 05 octobre 2022

Statistiques


Nombre de vues
306 (dont 16 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu