Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Resampling methods for a reliable validation set in deep learning based point cloud classification
NURUNNABI, Abdul Awal Md; TEFERLE, Felix Norman
2022In Resampling methods for a reliable validation set in deep learning based point cloud classification
Peer reviewed
 

Documents


Texte intégral
RESAMPLING_METHODS_FOR_A_RELIABLE_VALIDATION_SET_I.pdf
Postprint Éditeur (1.32 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Bootstrap; Supervised Method; Cross-Validation; Machine Learning; Monte Carlo; Semantic Segmentation; PointNet
Résumé :
[en] A validation data set plays a pivotal role in tweaking a machine learning model trained in a supervised manner. Many existing algorithms select a part of available data by using random sampling to produce a validation set. However, this approach can be prone to overfitting. One should follow careful data splitting to have reliable training and validation sets that can produce a generalized model with a good performance for the unseen (test) data. Data splitting based on resampling techniques involves repeatedly drawing samples from the available data. Hence, resampling methods can give better generalization power to a model, because they can produce and use many training and/or validation sets. These techniques are computationally expensive, but with increasingly available high-performance computing facilities, one can exploit them. Though a multitude of resampling methods exist, investigation of their influence on the generality of deep learning (DL) algorithms is limited due to its non-linear black-box nature. This paper contributes by: (1) investigating the generalization capability of the four most popular resampling methods: k-fold cross-validation (k-CV), repeated k-CV (Rk-CV), Monte Carlo CV (MC-CV) and bootstrap for creating training and validation data sets used for developing, training and validating DL based point cloud classifiers (e.g., PointNet; Qi et al., 2017a), (2) justifying Mean Square Error (MSE) as a statistically consistent estimator, and (3) exploring the use of MSE as a reliable performance metric for supervised DL. Experiments in this paper are performed on both synthetic and real-world aerial laser scanning (ALS) point clouds.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
NURUNNABI, Abdul Awal Md ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
TEFERLE, Felix Norman  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Resampling methods for a reliable validation set in deep learning based point cloud classification
Date de publication/diffusion :
juin 2022
Nom de la manifestation :
ISPRS Congress, 2022
Organisateur de la manifestation :
ISPRS
Lieu de la manifestation :
Nice, France
Date de la manifestation :
from 06-06-2022 to 11-06-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Resampling methods for a reliable validation set in deep learning based point cloud classification
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 29 septembre 2022

Statistiques


Nombre de vues
167 (dont 8 Unilu)
Nombre de téléchargements
134 (dont 2 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
1

Bibliographie


Publications similaires



Contacter ORBilu