Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A TWO-STEP FEATURE EXTRACTION ALGORITHM: APPLICATION TO DEEP LEARNING FOR POINT CLOUD CLASSIFICATION
NURUNNABI, Abdul Awal Md; TEFERLE, Felix Norman; Laefer, Debra et al.
2022In A TWO-STEP FEATURE EXTRACTION ALGORITHM: APPLICATION TO DEEP LEARNING FOR POINT CLOUD CLASSIFICATION
Peer reviewed
 

Documents


Texte intégral
A Two-step Feature Extraction Algorithm_Nurunnabi et al_isprs-archives-XLVI-2-W1-2022-401-2022.pdf
Postprint Éditeur (2.47 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Dimension Reduction; Semantic Segmentation; Feature Selection; Machine Learning; Neural Network; PCA; LiDAR
Résumé :
[en] Most deep learning (DL) methods that are not end-to-end use several multi-scale and multi-type hand-crafted features that make the network challenging, more computationally intensive and vulnerable to overfitting. Furthermore, reliance on empirically-based feature dimensionality reduction may lead to misclassification. In contrast, efficient feature management can reduce storage and computational complexities, builds better classifiers, and improves overall performance. Principal Component Analysis (PCA) is a well-known dimension reduction technique that has been used for feature extraction. This paper presents a two-step PCA based feature extraction algorithm that employs a variant of feature-based PointNet (Qi et al., 2017a) for point cloud classification. This paper extends the PointNet framework for use on large-scale aerial LiDAR data, and contributes by (i) developing a new feature extraction algorithm, (ii) exploring the impact of dimensionality reduction in feature extraction, and (iii) introducing a non-end-to-end PointNet variant for per point classification in point clouds. This is demonstrated on aerial laser scanning (ALS) point clouds. The algorithm successfully reduces the dimension of the feature space without sacrificing performance, as benchmarked against the original PointNet algorithm. When tested on the well-known Vaihingen data set, the proposed algorithm achieves an Overall Accuracy (OA) of 74.64% by using 9 input vectors and 14 shape features, whereas with the same 9 input vectors and only 5PCs (principal components built by the 14 shape features) it actually achieves a higher OA of 75.36% which demonstrates the effect of efficient dimensionality reduction.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
NURUNNABI, Abdul Awal Md ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
TEFERLE, Felix Norman  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Laefer, Debra;  New York University, USA > Center for Urban Science and Progress and Department of Civil and Urban Engineering
Lindenbergh, Roderik;  Delft University of Technology, The Netherlands > Geosciences and Remote Sensing, Faculty of Civil Engineering and Geosciences
Hunegnaw, Addisu;  University of Luxembourg, Luxembourg > Geodesy and Geospatial Engineering, Faculty of Science, Technology and Medicine
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A TWO-STEP FEATURE EXTRACTION ALGORITHM: APPLICATION TO DEEP LEARNING FOR POINT CLOUD CLASSIFICATION
Date de publication/diffusion :
mars 2022
Nom de la manifestation :
9th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures
Lieu de la manifestation :
Mantova, Italie
Date de la manifestation :
from 02-03-2022 to 04-03-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
A TWO-STEP FEATURE EXTRACTION ALGORITHM: APPLICATION TO DEEP LEARNING FOR POINT CLOUD CLASSIFICATION
Pagination :
401-408
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 29 septembre 2022

Statistiques


Nombre de vues
207 (dont 5 Unilu)
Nombre de téléchargements
74 (dont 2 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
3

Bibliographie


Publications similaires



Contacter ORBilu