[en] Absolute photoluminescence measurements present a tool to predict the quality of photovoltaic absorber materials before finishing the solar cells. Quasi Fermi level splitting predicts the maximal open circuit voltage. However, various methods to extract quasi Fermi level splitting are plagued by systematic errors in the range of 10–20 meV. It is important to differentiate between the radiative loss and the shift of the emission maximum. They are not the same and when using the emission maximum as the “radiative” band gap to extract the quasi Fermi level splitting from the radiative efficiency, the quasi Fermi level splitting is 10 to 40 meV too low for a typical broadening of the emission spectrum. However, radiative efficiency presents an ideal tool to compare different materials without determining the quasi Fermi level splitting. For comparison with the open circuit voltage, a fit of the high energy slope to generalised Planck’s law gives more reliable results if the fitted temperature, i.e. the slope of the high energy part, is close to the actual measurement temperature. Generalised Planck’s law also allows the extraction of a non-absolute absorptance spectrum, which enables a comparison between the emission maximum energy and the absorption edge. We discuss the errors and the indications when they are negligible and when not.
Disciplines :
Physique
Auteur, co-auteur :
SIEBENTRITT, Susanne ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
GHARABEIKI, Sevan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
WEISS, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
PROT, Aubin Jean-Claude Mireille ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
WANG, Taowen ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
ADELEYE, Damilola ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
DRAHEM, Marwan Mohamed Mostafa ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
SINGH, Ajay ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Photoluminescence assessment of materials for solar cell absorbers
Kirchartz T. Rau U. Adv. Energy Mater. 2018 8 1703385 10.1002/aenm.201703385
Scheer R. and Schock H. W., Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, Wiley-VCH, 2011
Kirchartz T. Márquez J. A. Stolterfoht M. Unold T. Adv. Energy Mater. 2020 10 1904134 10.1002/aenm.201904134
Siebentritt S. Weiss T. P. Sood M. Wolter M. H. Lomuscio A. Ramirez O. J. Phys.: Mater. 2021 4 042010
Lomuscio A. Rödel T. Schwarz T. Melchiorre M. Raabe D. Siebentritt S. Phys. Rev. Appl. 2019 11 054052 10.1103/PhysRevApplied.11.054052
Shockley W. Queisser H. J. J. Appl. Phys. 1961 32 510 519 10.1063/1.1736034
Würfel P., Physics of Solar Cells, Wiley-VCH, Weinheim, 2005
van Roosbroeck W. Shockley W. Phys. Rev. 1954 94 1558 1560 10.1103/PhysRev.94.1558
Pankove J. I., Optical Processes in Semiconductors, Dover Publications, New York, 1975
Rau U. Huhn V. Pieters B. E. Phys. Rev. Appl. 2020 14 014046 10.1103/PhysRevApplied.14.014046
Sood M. Urbaniak A. Boumenou C. K. Elanzeery H. Babbe F. Werner F. Melchiorre M. Redinger A. Siebentritt S. Progr. Photovolt.: Res. Appl. 2022 30 263 https://dx.doi.org/10.1002/pip.3483 10.1002/pip.3483
Green M. A. Prog. Photovolt.: Res. Appl. 2012 20 472 476 10.1002/pip.1147
Weiss T. P. Ehre F. Serrano-Escalante V. Wang T. Siebentritt S. Sol. RRL 2021 5 2100063 10.1002/solr.202100063
Trupke T. Bardos R. A. Abbott M. D. Cotter J. E. Appl. Phys. Lett. 2005 87 093503 10.1063/1.2034109
Krückemeier L. Rau U. Stolterfoht M. Kirchartz T. Adv. Energy Mater. 2020 10 1902573 10.1002/aenm.201902573
Rau U. Blank B. Müller T. C. M. Kirchartz T. Phys. Rev. Appl. 2017 7 044016 10.1103/PhysRevApplied.7.044016
Würfel P. J. Phys. C: Solid State Phys. 1982 15 3967 3985 10.1088/0022-3719/15/18/012
Ross R. T. J. Chem. Phys. 1967 46 4590 4593 10.1063/1.1840606
Gütay L. Pomraenke R. Lienau C. Bauer G. H. Phys. Status Solidi A 2009 206 1005 1009 10.1002/pssa.200881195
Unold T. and Gütay L., in Advanced Characterization Techniques for Thin Film Solar Cells, ed. D. Abou-Ras, T. Kirchartz and U. Rau, Wiley, 2011, pp. 151-176
Babbe F. Choubrac L. Siebentritt S. Appl. Phys. Lett. 2016 109 082105 10.1063/1.4961530
Siebentritt S. Rey G. Finger A. Sendler J. Weiss T. P. Regesch D. Bertram T. Sol. Energy Mater. Sol. Cells 2016 158 126 129 10.1016/j.solmat.2015.10.017
Rey G. Larramona G. Bourdais S. Choné C. Delatouche B. Jacob A. Dennler G. Siebentritt S. Sol. Energy Mater. Sol. Cells 2018 179 142 151 10.1016/j.solmat.2017.11.005
Badano G. Ballet P. Zanatta J.-P. Baudry X. Million A. Garland J. W. J. Opt. Soc. Am. B 2006 23 2089 2096 10.1364/JOSAB.23.002089
Lehmann D. Seidel F. Zahn D. R. T. SpringerPlus 2014 3 82 10.1186/2193-1801-3-82 24570853
Gabor A. M. Tuttle J. R. Bode M. H. Franz A. Tennant A. L. Contreras M. A. Noufi R. Jensen D. G. Hermann A. M. Sol. Energy Mater. Sol. Cells 1996 41-42 247 260 10.1016/0927-0248(95)00122-0
Feurer T. Bissig B. Weiss T. P. Carron R. Avancini E. Löckinger J. Buecheler S. Tiwari A. N. Sci. Technol. Adv. Mater. 2018 19 263 270 10.1080/14686996.2018.1444317 29707066
Weiss T. P. Bissig B. Feurer T. Carron R. Buecheler S. Tiwari A. N. Sci. Rep. 2019 9 5385 10.1038/s41598-019-41716-x 30926885
Wang T., Weiss T. P., Ehre F., Veith-Wolf B., Schmidt J., Titova V., Valle N., Melchiorre M. and Siebentritt S., Adv. Energy Mater., 2021
Zheng X. Kuciauskas D. Moseley J. Colegrove E. Albin D. S. Moutinho H. Duenow J. N. Ablekim T. Harvey S. P. Ferguson A. Metzger W. K. APL Mater. 2019 7 071112 10.1063/1.5098459
Rau U. Werner J. Appl. Phys. Lett. 2004 84 3735 10.1063/1.1737071
Carron R. Avancini E. Feurer T. Bissig B. Losio P. A. Figi R. Schreiner C. Burki M. Bourgeois E. Remes Z. Nesladek M. Buecheler S. Tiwari A. N. Sci. Technol. Adv. Mater. 2018 19 396 410 10.1080/14686996.2018.1458579 29785230
Rey G. Spindler C. Siebentritt S. Nuys M. Carius R. Li S. Platzer-Björkman C. Phys. Rev. Appl. 2018 9 064008 10.1103/PhysRevApplied.9.064008
Feurer T. Carron R. Sevilla G. T. Fu F. Pisoni S. Romanyuk Y. E. Buecheler S. Tiwari A. N. Adv. Energy Mater. 2019 9 1901428 10.1002/aenm.201901428
Wolter M. H. Bissig B. Avancini E. Carron R. Buecheler S. Jackson P. Siebentritt S. IEEE J. Photovoltaics 2018 8 1320 1325