Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Towards Refined Classifications Driven by SHAP Explanations
ARSLAN, Yusuf; LEBICHOT, Bertrand; ALLIX, Kevin et al.
2022In Holzinger, Andreas; Kieseberg, Peter; Tjoa, A. Min et al. (Eds.) Machine Learning and Knowledge Extraction
Peer reviewed
 

Documents


Texte intégral
CDMAKE2022.pdf
Postprint Éditeur (2.97 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Interpretable Machine Learning; SHAP Explanations; Second-step Classification
Résumé :
[en] Machine Learning (ML) models are inherently approximate; as a result, the predictions of an ML model can be wrong. In applications where errors can jeopardize a company's reputation, human experts often have to manually check the alarms raised by the ML models by hand, as wrong or delayed decisions can have a significant business impact. These experts often use interpretable ML tools for the verification of predictions. However, post-prediction verification is also costly. In this paper, we hypothesize that the outputs of interpretable ML tools, such as SHAP explanations, can be exploited by machine learning techniques to improve classifier performance. By doing so, the cost of the post-prediction analysis can be reduced. To confirm our intuition, we conduct several experiments where we use SHAP explanations directly as new features. In particular, by considering nine datasets, we first compare the performance of these "SHAP features" against traditional "base features" on binary classification tasks. Then, we add a second-step classifier relying on SHAP features, with the goal of reducing false-positive and false-negative results of typical classifiers. We show that SHAP explanations used as SHAP features can help to improve classification performance, especially for false-negative reduction.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ARSLAN, Yusuf ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
LEBICHOT, Bertrand ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
ALLIX, Kevin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
VEIBER, Lisa ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Lefebvre, Clement
Boytsov, Andrey
Goujon, Anne
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Towards Refined Classifications Driven by SHAP Explanations
Date de publication/diffusion :
11 août 2022
Nom de la manifestation :
Cross Domain Conference for Machine Learning & Knowledge Extraction
Organisateur de la manifestation :
17th International Conference on Availability, Reliability and Security ARES 2022
Lieu de la manifestation :
Vienna, Autriche
Date de la manifestation :
from 23-08-2022 to 26-08-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Machine Learning and Knowledge Extraction
Editeur scientifique :
Holzinger, Andreas
Kieseberg, Peter
Tjoa, A. Min
Weippl, Edgar
Maison d'édition :
Springer
ISBN/EAN :
978-3-031-14463-9
Pagination :
68-81
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Finance
Disponible sur ORBilu :
depuis le 20 septembre 2022

Statistiques


Nombre de vues
210 (dont 3 Unilu)
Nombre de téléchargements
476 (dont 4 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
14

Bibliographie


Publications similaires



Contacter ORBilu