Microglia phenotypes are associated with subregional patterns of concomitant tau, amyloid-β and α-synuclein pathologies in the hippocampus of patients with Alzheimer’s disease and dementia with Lewy bodies
[en] The cellular alterations of the hippocampus lead to memory decline, a shared symptom between Alzheimer’s disease (AD) and dementia with Lewy Bodies (DLB) patients. However, the subregional deterioration pattern of the hippocampus differs between AD and DLB with the CA1 subfield being more severely affected in AD. The activation of microglia, the brain immune cells, could play a role in its selective volume loss. How subregional microglia populations vary within AD or DLB and across these conditions remains poorly understood. Furthermore, how the nature of the hippocampal local pathological imprint is associated with microglia responses needs to be elucidated. To this purpose, we employed an automated pipeline for analysis of 3D confocal microscopy images to assess CA1, CA3 and DG/CA4 subfields microglia responses in post-mortem hippocampal samples from late-onset AD (n = 10), DLB (n = 8) and age-matched control (CTL) (n = 11) individuals. In parallel, we performed volumetric analyses of hyperphosphorylated tau (pTau), amyloid-β (Aβ) and phosphorylated α-synuclein (pSyn) loads. For each of the 32,447 extracted microglia, 16 morphological features were measured to classify them into seven distinct morphological clusters. Our results show similar alterations of microglial morphological features and clusters in AD and DLB, but with more prominent changes in AD. We identified two distinct microglia clusters enriched in disease conditions and particularly increased in CA1 and DG/CA4 of AD and CA3 of DLB. Our study confirms frequent concomitance of pTau, Aβ and pSyn loads across AD and DLB but reveals a specific subregional pattern for each type of pathology, along with a generally increased severity in AD. Furthermore, pTau and pSyn loads were highly correlated across subregions and conditions. We uncovered tight associations between microglial changes and the subfield pathological imprint. Our findings suggest that combinations and severity of subregional pTau, Aβ and pSyn pathologies transform local microglia phenotypic composition in the hippocampus. The high burdens of pTau and pSyn associated with increased microglial alterations could be a factor in CA1 vulnerability in AD.
Disciplines :
Neurology
Author, co-author :
FIXEMER, Sonja ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Integrative Cell Signalling
AMELI, Corrado ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Integrative Cell Signalling
Hammer, Gaël
Salamanca, Luis
Uriarte Huarte, Oihane
Schwartz, Chantal
GERARDY, Jean-Jacques ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Mechawar, Naguib
SKUPIN, Alexander ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Integrative Cell Signalling
MITTELBRONN, Michel ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Microglia phenotypes are associated with subregional patterns of concomitant tau, amyloid-β and α-synuclein pathologies in the hippocampus of patients with Alzheimer’s disease and dementia with Lewy bodies
Adler DH, Wisse LEM, Ittyerah R, Pluta JB, Ding SL, Xie L, Wang J, Kadivar S, Robinson JL, Schuck T, Trojanowski JQ, Grossman M, Detre JA, Elliott MA, Toledo JB, Liu W, Pickup S, Miller MI, Das SR, Wolk DA, Yushkevich PA (2018) Characterizing the human hippocampus in aging and Alzheimer’s disease using a computational atlas derived from ex vivo MRI and histology. Proc Natl Acad Sci USA. 10.1073/pnas.1801093115 DOI: 10.1073/pnas.1801093115
Amin J, Holmes C, Dorey RB, Tommasino E, Casal YR, Williams DM, Dupuy C, Nicoll JAR, Boche D (2020) Neuroinflammation in dementia with Lewy bodies: a human post-mortem study. Transl Psychiatry. 10.1038/s41398-020-00954-8 DOI: 10.1038/s41398-020-00954-8
Apostolova LG, Mosconi L, Thompson PM, Green AE, Hwang KS, Ramirez A, Mistur R, Tsui WH, de Leon MJ (2010) Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol Aging. 10.1016/j.neurobiolaging.2008.08.008 DOI: 10.1016/j.neurobiolaging.2008.08.008
Armstrong RA, Cairns NJ (2015) Comparative quantitative study of ‘signature’ pathological lesions in the hippocampus and adjacent gyri of 12 neurodegenerative disorders. J Neural Transm 122:1355–1367. 10.1007/s00702-015-1402-8 DOI: 10.1007/s00702-015-1402-8
Ayhan F, Kulkarni A, Berto S, Sivaprakasam K, Douglas C, Lega BC, Konopka G (2021) Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron 109:2091-2105.e6. 10.1016/j.neuron.2021.05.003 DOI: 10.1016/j.neuron.2021.05.003
Bachstetter AD, Eldik LJV, Schmitt FA, Neltner JH, Ighodaro ET, Webster SJ, Patel E, Abner EL, Kryscio RJ, Nelson PT (2015) Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol Commun 3:32. 10.1186/s40478-015-0209-z DOI: 10.1186/s40478-015-0209-z
Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A (2021) The contribution of microglia to neuroinflammation in Parkinson’s disease. IJMS 22:4676. 10.3390/ijms22094676 DOI: 10.3390/ijms22094676
Basu J, Siegelbaum SA (2015) The corticohippocampal circuit, synaptic plasticity, and memory. Cold Spring Harb Perspect Biol 7:a021733. 10.1101/cshperspect.a021733 DOI: 10.1101/cshperspect.a021733
Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9:182–194. 10.1038/nrn2335 DOI: 10.1038/nrn2335
Bouvier DS, Jones EV, Quesseveur G, Davoli MA, Ferreira T, Quirion R, Mechawar N, Murai KK (2016) High resolution dissection of reactive glial nets in Alzheimer’s disease. Sci Rep 6:24544. 10.1038/srep24544 DOI: 10.1038/srep24544
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. 10.1007/s00401-006-0127-z DOI: 10.1007/s00401-006-0127-z
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. 10.1007/BF00308809 DOI: 10.1007/BF00308809
Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641. 10.1016/S0896-6273(02)00830-9 DOI: 10.1016/S0896-6273(02)00830-9
Candlish M, Hefendehl JK (2021) Microglia phenotypes converge in aging and neurodegenerative disease. Front Neurol 12:660720. 10.3389/fneur.2021.660720 DOI: 10.3389/fneur.2021.660720
Chen WT, Lu A, Craessaerts K, Pavie B, Frigerio CS, Corthout N, Qian X, Laláková J, Kühnemund M, Voytyuk I, Wolfs L, Mancuso R, Salta E, Balusu S, Snellinx A, Munck S, Jurek A, Navarro JF, Saido TC, Huitinga I, Lundeberg J, Fiers M, Strooper BD (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182:976-991.e19. 10.1016/j.cell.2020.06.038 DOI: 10.1016/j.cell.2020.06.038
Chia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH, Gustavsson E, Walton RL, Ahmed S, Viollet C, Ding J, Makarious MB, Diez-Fairen M, Portley MK, Shah Z, Abramzon Y, Hernandez DG, Blauwendraat C, Stone DJ, Eicher J, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, George-Hyslop PS, Londos E, Morgan K, Lashley T, Warner TT, Jaunmuktane Z, Galasko D, Santana I, Tienari PJ, Myllykangas L, Oinas M, Cairns NJ, Morris JC, Halliday GM, Deerlin VMV, Trojanowski JQ, Grassano M, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Brett F, Gan-Or Z, Geiger JT, Moore A, May P, Krüger R, Goldstein DS, Lopez G, Tayebi N, Sidransky E, Sotis AR, Sukumar G, Alba C, Lott N, Martinez EMG, Tuck M, Singh J, Bacikova D, Zhang X, Hupalo DN, Adeleye A, Wilkerson MD, Pollard HB, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Shakkottai VG, Perkins M, Newell KL, Gasser T, Schulte C, Landi F, Salvi E, Cusi D, Masliah E, Kim RC, Caraway CA, Monuki ES, Brunetti M, Dawson TM, Rosenthal LS, Albert MS, Pletnikova O, Troncoso JC, Flanagan ME, Mao Q, Bigio EH, Rodríguez-Rodríguez E, Infante J, Lage C, González-Aramburu I, Sanchez-Juan P, Ghetti B, Keith J, Black SE, Masellis M, Rogaeva E, Duyckaerts C, Brice A, Lesage S, Xiromerisiou G, Barrett MJ, Tilley BS, Gentleman S, Logroscino G, Serrano GE, Beach TG, McKeith IG, Thomas AJ, Attems J, Morris CM, Palmer L, Love S, Troakes C, Al-Sarraj S, Hodges AK, Aarsland D, Klein G, Kaiser SM, Woltjer R, Pastor P, Bekris LM, Leverenz JB, Besser LM, Kuzma A, Renton AE, Goate A, Bennett DA, Scherzer CR, Morris HR, Ferrari R, Albani D, Pickering-Brown S, Faber K, Kukull WA, Morenas-Rodriguez E, Lleó A, Fortea J, Alcolea D, Clarimon J, Nalls MA, Ferrucci L, Resnick SM, Tanaka T, Foroud TM, Graff-Radford NR, Wszolek ZK, Ferman T, Boeve BF, Hardy JA, Topol EJ, Torkamani A, Singleton AB, Ryten M, Dickson DW, Chiò A, Ross OA, Gibbs JR, Dalgard CL, Traynor BJ, Scholz SW (2021) Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 53:294–303. 10.1038/s41588-021-00785-3 DOI: 10.1038/s41588-021-00785-3
Colom-Cadena M, Gelpi E, Charif S, Belbin O, Blesa R, Martí MJ, Clarimón J, Lleó A (2013) Confluence of α-synuclein, tau, and β-amyloid pathologies in dementia with Lewy bodies. J Neuropathol Exp Neurol 72:1203–1212. 10.1097/NEN.0000000000000018 DOI: 10.1097/NEN.0000000000000018
Coras R, Pauli E, Li J, Schwarz M, Rössler K, Buchfelder M, Hamer H, Stefan H, Blumcke I (2014) Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy. Brain. 10.1093/brain/awu100 DOI: 10.1093/brain/awu100
Coughlin DG, Ittyerah R, Peterson C, Phillips JS, Miller S, Rascovsky K, Weintraub D, Siderowf AD, Duda JE, Hurtig HI, Wolk DA, McMillan CT, Yushkevich PA, Grossman M, Lee EB, Trojanowski JQ, Irwin DJ (2020) Hippocampal subfield pathologic burden in Lewy body diseases vs. Alzheimer’s disease. Neuropathol Appl Neurobiol. 10.1111/nan.12659 DOI: 10.1111/nan.12659
Crist AM, Hinkle KM, Wang X, Moloney CM, Matchett BJ, Labuzan SA, Frankenhauser I, Azu NO, Liesinger AM, Lesser ER, Serie DJ, Quicksall ZS, Patel TA, Carnwath TP, DeTure M, Tang X, Petersen RC, Duara R, Graff-Radford NR, Allen M, Carrasquillo MM, Li H, Ross OA, Ertekin-Taner N, Dickson DW, Asmann YW, Carter RE, Murray ME (2021) Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer’s disease. Nat Commun. 10.1038/s41467-021-22399-3 DOI: 10.1038/s41467-021-22399-3
Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L (1988) Clinico-pathologic studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology. 10.1212/wnl.38.11.1682 DOI: 10.1212/wnl.38.11.1682
Dabov K, Foi A, Katkovnik V, Egiazarian K (2008) Image restoration by sparse 3D transform-domain collaborative filtering. In: Proceedings volume 6812, image processing: algorithms and systems VI
Del-Aguila JL, Li Z, Dube U, Mihindukulasuriya KA, Budde JP, Fernandez MV, Ibanez L, Bradley J, Wang F, Bergmann K, Davenport R, Morris JC, Holtzman DM, Perrin RJ, Benitez BA, Dougherty J, Cruchaga C, Harari O (2019) A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain. Alzheimer’s Res Ther. 10.1186/s13195-019-0524-x DOI: 10.1186/s13195-019-0524-x
Dubois B (2018) The emergence of a new conceptual framework for Alzheimer’s disease. J Alzheimer’s Dis 62:1059–1066. 10.3233/JAD-170536 DOI: 10.3233/JAD-170536
Femminella GD, Ninan S, Atkinson R, Fan Z, Brooks DJ, Edison P (2016) Does microglial activation influence hippocampal volume and neuronal function in Alzheimer’s disease and Parkinson’s disease dementia? J Alzheimer’s Dis 51:1275–1289. 10.3233/JAD-150827 DOI: 10.3233/JAD-150827
Ferrarini L, Lew BV, Reiber JHC, Gandin C, Galluzzo L, Scafato E, Frisoni GB, Milles J, Pievani M, Farchi G, Giampaoli S, Mariotti S, Gandin C, Galluzzo L, Ghirini S, Martire S, Pasquale LD, Maggi S, Crepaldi G, Enzi G, Gallina P, Inzitari D, Baldereschi M, Carlo AD, Galluzzi S, Gandolfo C, Conti M, Postacchini D, Cruciani G, Giuli C, Capurso A, Solfrizzi V, Panza F, Rengo F, Abete P, Motta M, Negrini R, Forti P, Tabanelli P, Cocchi A, Zuccal G, Cacciatore F, Calabrese C, Sica G, Estraneo A, Consoli D, Naso F, Torcasio G, Mecocci P, Rinaldi P, Serafini V, Senin U (2014) Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study. Int Psychogeriatr. 10.1017/S1041610213002627 DOI: 10.1017/S1041610213002627
Ferreira D, Przybelski SA, Lesnick TG, Lemstra AW, Londos E, Blanc F, Nedelska Z, Schwarz CG, Graff-Radford J, Senjem ML, Fields JA, Knopman DS, Savica R, Ferman TJ, Graff-Radford NR, Lowe VJ, Jack CR, Petersen RC, Mollenhauer B, Garcia-Ptacek S, Abdelnour C, Hort J, Bonanni L, Oppedal K, Kramberger MG, Boeve BF, Aarsland D, Westman E, Kantarci K (2020) β-Amyloid and tau biomarkers and clinical phenotype in dementia with Lewy bodies. Neurology. 10.1212/WNL.0000000000010943 DOI: 10.1212/WNL.0000000000010943
Foo H, Thalamuthu A, Jiang J, Koch F, Mather KA, Wen W, Sachdev PS (2021) Associations between Alzheimer’s disease polygenic risk scores and hippocampal subfield volumes in 17,161 UK Biobank participants. Neurobiol Aging 98:108–115. 10.1016/j.neurobiolaging.2020.11.002 DOI: 10.1016/j.neurobiolaging.2020.11.002
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 10.1006/jcss.1997.1504 DOI: 10.1006/jcss.1997.1504
Frigerio CS, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I, Mancuso R, Chen WT, Woodbury ME, Srivastava G, Möller T, Hudry E, Das S, Saido T, Karran E, Hyman B, Perry VH, Fiers M, Strooper BD (2019) The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 10.1016/j.celrep.2019.03.099 DOI: 10.1016/j.celrep.2019.03.099
Gerrits E, Brouwer N, Kooistra SM, Woodbury ME, Vermeiren Y, Lambourne M, Mulder J, Kummer M, Möller T, Biber K, den Dunnen WFA, Deyn PPD, Eggen BJL, Boddeke EWGM (2021) Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol 141:681–696. 10.1007/s00401-021-02263-w DOI: 10.1007/s00401-021-02263-w
Goedert M, Jakes R, Vanmechelen E (1995) Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 189:167–170. 10.1016/0304-3940(95)11484-E DOI: 10.1016/0304-3940(95)11484-E
Golde TE, Borchelt DR, Giasson BI, Lewis J (2013) Thinking laterally about neurodegenerative proteinopathies. J Clin Investig. 10.1172/JCI66029 DOI: 10.1172/JCI66029
Golomb J, Leon MJ, Kluger A, Tarshish C, Ferris SH, George AE (1993) Hippocampal atrophy in normal aging: an association with recent memory impairment. Arch Neurol. 10.1001/archneur.1993.00540090066012 DOI: 10.1001/archneur.1993.00540090066012
Griffin WST, Liu L, Li Y, Mrak RE, Barger SW (2006) Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflamm 3:1–9. 10.1186/1742-2094-3-5 DOI: 10.1186/1742-2094-3-5
Grubman A, Choo XY, Chew G, Ouyang JF, Sun G, Croft NP, Rossello FJ, Simmons R, Buckberry S, Landin DV, Pflueger J, Vandekolk TH, Abay Z, Zhou Y, Liu X, Chen J, Larcombe M, Haynes JM, McLean C, Williams S, Chai SY, Wilson T, Lister R, Pouton CW, Purcell AW, Rackham OJL, Petretto E, Polo JM (2021) Transcriptional signature in microglia associated with Aβ plaque phagocytosis. Nat Commun. 10.1038/s41467-021-23111-1 DOI: 10.1038/s41467-021-23111-1
Hunter S, Brayne C (2017) Do anti-amyloid beta protein antibody cross reactivities confound Alzheimer disease research? J Negat Res Biomed 16:1–8. 10.1186/s12952-017-0066-3 DOI: 10.1186/s12952-017-0066-3
Iseki E, Takayama N, Marui W, Uéda K, Kosaka K (2002) Relationship in the formation process between neurofibrillary tangles and Lewy bodies in the hippocampus of dementia with Lewy bodies brains. J Neurol Sci 195:85–91. 10.1016/S0022-510X(01)00689-X DOI: 10.1016/S0022-510X(01)00689-X
Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FRJ, Visser PJ, Aalten P, Aarsland D, Alcolea D, Alexander M, Almdahl IS, Arnold SE, Baldeiras I, Barthel H, Berckel BNMV, Bibeau K, Blennow K, Brooks DJ, Buchem MAV, Camus V, Cavedo E, Chen K, Chetelat G, Cohen AD, Drzezga A, Engelborghs S, Fagan AM, Fladby T, Fleisher AS, Flier WMVD, Ford L, Forster S, Fortea J, Foskett N, Frederiksen KS, Freund-Levi Y, Frisoni GB, Froelich L, Gabryelewicz T, Gill KD, Gkatzima O, Gomez-Tortosa E, Gordon MF, Grimmer T, Hampel H, Hausner L, Hellwig S, Herukka SK, Hildebrandt H, Ishihara L, Ivanoiu A, Jagust WJ, Johannsen P, Kandimalla R, Kapaki E, Klimkowicz-Mrowiec A, Klunk WE, Kohler S, Koglin N, Kornhuber J, Kramberger MG, Laere KV, Landau SM, Lee DY, Leon MD, Lisetti V, Lleo A, Madsen K, Maier W, Marcusson J, Mattsson N, Mendonca AD, Meulenbroek O, Meyer PT, Mintun MA, Mok V, Molinuevo JL, Mollergard HM, Morris JC, Mroczko B, Mussele SVD, Na DL, Newberg A, Nordberg A, Nordlund A, Novak GP, Paraskevas GP, Parnetti L, Perera G, Peters O, Popp J, Prabhakar S, Rabinovici GD, Ramakers IHGB, Rami L, Oliveira CRD, Rinne JO, Rodrigue KM, Rodriguez-Rodriguez E, Roe CM, Rot U, Rowe CC, Ruther E, Sabri O, Sanchez-Juan P, Santana I, Sarazin M, Schroder J, Schutte C, Seo SW, Soetewey F, Soininen H, Spiru L, Struyfs H, Teunissen CE, Tsolaki M, Vandenberghe R, Verbeek MM, Villemagne VL, Vos SJB, Doorn LJCVWV, Waldemar G, Wallin A, Wallin AK, Wiltfang J, Wolk DA, Zboch M, Zetterberg H (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA J Am Med Assoc. 10.1001/jama.2015.4668 DOI: 10.1001/jama.2015.4668
Joie RL, Perrotin A, Sayette VDL, Egret S, Doeuvre L, Belliard S, Eustache F, Desgranges B, Chételat G (2013) Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. NeuroImage Clin. 10.1016/j.nicl.2013.08.007 DOI: 10.1016/j.nicl.2013.08.007
Josephs KA, Dickson DW, Tosakulwong N, Weigand SD, Murray ME, Petrucelli L, Liesinger AM, Senjem ML, Spychalla AJ, Knopman DS, Parisi JE, Petersen RC, Jack CR, Whitwell JL (2017) Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer’s disease: a longitudinal retrospective study. Lancet Neurol 16:917–924. 10.1016/S1474-4422(17)30284-3 DOI: 10.1016/S1474-4422(17)30284-3
Kawas CH, Kim RC, Sonnen JA, Bullain SS, Trieu T, Corrada MM (2015) Multiple pathologies are common and related to dementia in the oldest-old: the 90 + Study. Neurology. 10.1212/WNL.0000000000001831 DOI: 10.1212/WNL.0000000000001831
Kerchner GA, Deutsch GK, Zeineh M, Dougherty RF, Saranathan M, Rutt BK (2012) Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer’s disease. Neuroimage. 10.1016/j.neuroimage.2012.06.048 DOI: 10.1016/j.neuroimage.2012.06.048
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276-1290.e17. 10.1016/j.cell.2017.05.018 DOI: 10.1016/j.cell.2017.05.018
Kovacs GG, Milenkovic I, Wöhrer A, Höftberger R, Gelpi E, Haberler C, Hönigschnabl S, Reiner-Concin A, Heinzl H, Jungwirth S, Krampla W, Fischer P, Budka H (2013) Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol. 10.1007/s00401-013-1157-y DOI: 10.1007/s00401-013-1157-y
Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, Fatimy RE, Beckers L, O’Loughlin E, Xu Y, Fanek Z, Greco DJ, Smith ST, Tweet G, Humulock Z, Zrzavy T, Conde-Sanroman P, Gacias M, Weng Z, Chen H, Tjon E, Mazaheri F, Hartmann K, Madi A, Ulrich JD, Glatzel M, Worthmann A, Heeren J, Budnik B, Lemere C, Ikezu T, Heppner FL, Litvak V, Holtzman DM, Lassmann H, Weiner HL, Ochando J, Haass C, Butovsky O (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 10.1016/j.immuni.2017.08.008 DOI: 10.1016/j.immuni.2017.08.008
Lashuel HA (2021) Rethinking protein aggregation and drug discovery in neurodegenerative diseases: why we need to embrace complexity? Curr Opin Chem Biol 64:67–75. 10.1016/J.CBPA.2021.05.006 DOI: 10.1016/J.CBPA.2021.05.006
Lee CYD, Landreth GE (2010) The role of microglia in amyloid clearance from the AD brain. J Neural Transm 117:949–960. 10.1007/s00702-010-0433-4 DOI: 10.1007/s00702-010-0433-4
Lisman J, Redish AD (2018) Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci 20:1434–1447. 10.1038/nn.4661 DOI: 10.1038/nn.4661
Lucy LB (1974) An iterative technique for the rectification of observed distributions. Astron J. 10.1086/111605 DOI: 10.1086/111605
Luo W, Liu W, Hu X, Hanna M, Caravaca A, Paul SM (2015) Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep. 10.1038/srep11161 DOI: 10.1038/srep11161
Mackenzie IRA (2000) Activated microglia in dementia with Lewy bodies. Neurology 55:132–134. 10.1212/WNL.55.1.132 DOI: 10.1212/WNL.55.1.132
Mak E, Su L, Williams GB, Watson R, Firbank M, Blamire A, O’Brien J (2016) Differential atrophy of hippocampal subfields: a comparative study of dementia with lewy bodies and Alzheimer disease. Am J Geriatric Psychiatry 24:136–143. 10.1016/j.jagp.2015.06.006 DOI: 10.1016/j.jagp.2015.06.006
Markesbery WR, Jicha GA, Liu H, Schmitt FA (2009) Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol. 10.1097/NEN.0b013e3181ac10a7 DOI: 10.1097/NEN.0b013e3181ac10a7
Márquez-Ropero M, Benito E, Plaza-Zabala A, Sierra A (2020) Microglial corpse clearance: lessons from macrophages. Front Immunol 11:506. 10.3389/fimmu.2020.00506 DOI: 10.3389/fimmu.2020.00506
Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar SC, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Gold R, Grün D, Priller J, Stadelmann C, Prinz M (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392. 10.1038/s41586-019-0924-x DOI: 10.1038/s41586-019-0924-x
Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob F, Jiang X, Martorell AJ, Ransohoff RM, Hafler BP, Bennett DA, Kellis M, Tsai LH (2019) Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 10.1038/s41586-019-1195-2 DOI: 10.1038/s41586-019-1195-2
McInnes L, Healy J, Saul N, Großberger L (2018) UMAP: uniform manifold approximation and projection. J Open Source Softw. 10.21105/joss.00861 DOI: 10.21105/joss.00861
McKeith IG (2006) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. JAD 9:417–423. 10.3233/JAD-2006-9S347 DOI: 10.3233/JAD-2006-9S347
Boeve MIGDD, BF, (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 10.1212/WNL.0000000000004058 DOI: 10.1212/WNL.0000000000004058
McQuade A, Blurton-Jones M (2019) Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol 431:1805–1817. 10.1016/j.jmb.2019.01.045 DOI: 10.1016/j.jmb.2019.01.045
Meneses A, Koga S, Leary JO, Dickson DW, Bu G, Zhao N (2021) TDP-43 pathology in Alzheimer’s disease. Mol Neurodegener 16(84):1–15. 10.1186/s13024-021-00503-x DOI: 10.1186/s13024-021-00503-x
Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Trojanowski JQ, Vinters HV, Hyman BT (2012) National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 10.1007/s00401-011-0910-3 DOI: 10.1007/s00401-011-0910-3
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ (2019) The basis of cellular and regional vulnerability in Alzheimer’s disease. Acta Neuropathol 138:729–749. 10.1007/s00401-019-02054-4 DOI: 10.1007/s00401-019-02054-4
Nakashima-Yasuda H, Uryu K, Robinson J, Xie SX, Hurtig H, Duda JE, Arnold SE, Siderowf A, Grossman M, Leverenz JB, Woltjer R, Lopez OL, Hamilton R, Tsuang DW, Galasko D, Masliah E, Kaye J, Clark CM, Montine TJ, Lee VM-Y, Trojanowski JQ (2007) Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 114:221–229. 10.1007/s00401-007-0261-2 DOI: 10.1007/s00401-007-0261-2
Paasila PJ, Davies DS, Kril JJ, Goldsbury C, Sutherland GT (2019) The relationship between the morphological subtypes of microglia and Alzheimer’s disease neuropathology. Brain Pathol. 10.1111/bpa.12717 DOI: 10.1111/bpa.12717
Paolicelli RC, Jawaid A, Henstridge CM, Valeri A, Merlini M, Robinson JL, Lee EB, Rose J, Appel S, Lee VMY, Trojanowski JQ, Spires-Jones T, Schulz PE, Rajendran L (2017) TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron 95:297-308.e6. 10.1016/j.neuron.2017.05.037 DOI: 10.1016/j.neuron.2017.05.037
Patir A, Shih B, McColl BW, Freeman TC (2019) A core transcriptional signature of human microglia: derivation and utility in describing region-dependent alterations associated with Alzheimer’s disease. Glia 67:1240–1253. 10.1002/glia.23572 DOI: 10.1002/glia.23572
Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179:292–311. 10.1016/j.cell.2019.08.053 DOI: 10.1016/j.cell.2019.08.053
Quesseveur G, Fouquier d’Hérouël A, Murai KK, Bouvier DS (2019) A specialized method to resolve fine 3D features of astrocytes in nonhuman primate (Marmoset, Callithrix jacchus) and human fixed brain samples. In: Di Benedetto B (ed) Astrocytes. Springer, New York, pp 85–95 DOI: 10.1007/978-1-4939-9068-9_6
Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, Caswell C, Deerlin VMV, Yan N, Yousef A, Hurtig HI, Siderowf A, Grossman M, McMillan CT, Miller B, Duda JE, Irwin DJ, Wolk D, Elman L, McCluskey L, Chen-Plotkin A, Weintraub D, Arnold SE, Brettschneider J, Lee VMY, Trojanowski JQ (2018) Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 10.1093/brain/awy146 DOI: 10.1093/brain/awy146
Rodrigue KM, Kennedy KM, Devous MD, Rieck JR, Hebrank AC, Diaz-Arrastia R, Mathews D, Park DC (2012) β-amyloid burden in healthy aging: regional distribution and cognitive consequences. Neurology. 10.1212/WNL.0b013e318245d295 DOI: 10.1212/WNL.0b013e318245d295
Sabattoli F, Boccardi M, Galluzzi S, Treves A, Thompson PM, Frisoni GB (2008) Hippocampal shape differences in dementia with Lewy bodies. Neuroimage. 10.1016/j.neuroimage.2008.02.060 DOI: 10.1016/j.neuroimage.2008.02.060
Salamanca L, Mechawar N, Murai KK, Balling R, Bouvier DS, Skupin A (2019) MIC-MAC: An automated pipeline for high-throughput characterization and classification of three-dimensional microglia morphologies in mouse and human postmortem brain samples. Glia. 10.1002/glia.23623 DOI: 10.1002/glia.23623
Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027. 10.1038/nm.4397 DOI: 10.1038/nm.4397
Sanchez-Mejias E, Navarro V, Jimenez S, Sanchez-Mico M, Sanchez-Varo R, Nuñez-Diaz C, Trujillo-Estrada L, Davila JC, Vizuete M, Gutierrez A, Vitorica J (2016) Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol. 10.1007/s00401-016-1630-5 DOI: 10.1007/s00401-016-1630-5
Savage JC, Carrier M, Tremblay M-È (2019) Chapter 2 morphology of microglia across contexts of health. Methods Mol Biol. 10.1007/978-1-4939-9658-2_2
Schmidt ML, Martin JA, Lee VMY, Trojanowski JQ (1996) Convergence of Lewy bodies and neurofibrillary tangles in amygdala neurons of Alzheimer’s disease and Lewy body disorders. Acta Neuropathol 91:475–481. 10.1007/s004010050454 DOI: 10.1007/s004010050454
Schumacher J, Gunter JL, Przybelski SA, Jones DT, Graff-Radford J, Savica R, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Knopman DS, Fields JA, Kremers WK, Petersen RC, Graff-Radford NR, Ferman TJ, Boeve BF, Thomas AJ, Taylor J-P, Kantarci K (2021) Dementia with Lewy bodies: association of Alzheimer pathology with functional connectivity networks. Brain. 10.1093/brain/awab218 DOI: 10.1093/brain/awab218
Seok JW, Cheong C (2020) Functional dissociation of hippocampal subregions corresponding to memory types and stages. J Physiol Anthropol. 10.1186/s40101-020-00225-x DOI: 10.1186/s40101-020-00225-x
Španić E, Langer Horvat L, Hof PR, Šimić G (2019) Role of microglial cells in Alzheimer’s disease tau propagation. Front Aging Neurosci 11:271. 10.3389/fnagi.2019.00271 DOI: 10.3389/fnagi.2019.00271
Srinivasan K, Friedman BA, Etxeberria A, Huntley MA, van der Brug MP, Foreman O, Paw JS, Modrusan Z, Beach TG, Serrano GE, Hansen DV (2020) Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep. 10.1016/j.celrep.2020.107843 DOI: 10.1016/j.celrep.2020.107843
Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15:655–669. 10.1038/nrn3785 DOI: 10.1038/nrn3785
Streit WJ, Xue QS (2016) Microglia in dementia with Lewy bodies. Brain Behav Immun 55:191–201. 10.1016/j.bbi.2015.10.012 DOI: 10.1016/j.bbi.2015.10.012
Surendranathan A, Su L, Mak E, Passamonti L, Hong YT, Arnold R, Rodríguez PV, Bevan-Jones WR, Brain SAE, Fryer TD, Aigbirhio FI, Rowe JB, O’Brien JT (2018) Early microglial activation and peripheral inflammation in dementia with Lewy bodies. Brain 141:3415–3427. 10.1093/brain/awy265 DOI: 10.1093/brain/awy265
Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800. 10.1212/WNL.58.12.1791 DOI: 10.1212/WNL.58.12.1791
Tracy TE, Madero-Pérez J, Swaney DL, Chang TS, Moritz M, Konrad C, Ward ME, Stevenson E, Hüttenhain R, Kauwe G, Mercedes M, Sweetland-Martin L, Chen X, Mok S-A, Wong MY, Telpoukhovskaia M, Min S-W, Wang C, Sohn PD, Martin J, Zhou Y, Luo W, Trojanowski JQ, Lee VMY, Gong S, Manfredi G, Coppola G, Krogan NJ, Geschwind DH, Gan L (2022) Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell 185:712-728.e14. 10.1016/j.cell.2021.12.041 DOI: 10.1016/j.cell.2021.12.041
Uriarte Huarte O, Richart L, Mittelbronn M, Michelucci A (2021) Microglia in health and disease: the strength to be diverse and reactive. Front Cell Neurosci 15:660523. 10.3389/fncel.2021.660523 DOI: 10.3389/fncel.2021.660523
Walker DG (2020) Defining activation states of microglia in human brain tissue: an unresolved issue for Alzheimer’s disease. Neuroimmunol Neuroinflamm. 10.20517/2347-8659.2020.09 DOI: 10.20517/2347-8659.2020.09
Walker L, McAleese KE, Thomas AJ, Johnson M, Martin-Ruiz C, Parker C, Colloby SJ, Jellinger K, Attems J (2015) Neuropathologically mixed Alzheimer’s and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol. 10.1007/s00401-015-1406-3 DOI: 10.1007/s00401-015-1406-3
Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 10.1080/01621459.1963.10500845 DOI: 10.1080/01621459.1963.10500845
Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34:515–525. 10.1016/j.tins.2011.06.006 DOI: 10.1016/j.tins.2011.06.006
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142. 10.1126/science.aaa1934 DOI: 10.1126/science.aaa1934
Zhao W, Wang X, Yin C, He M, Li S, Han Y (2019) Trajectories of the hippocampal subfields atrophy in the alzheimer’s disease: a structural imaging study. Front Neuroinform. 10.3389/fninf.2019.00013 DOI: 10.3389/fninf.2019.00013