[en] Bistable biological regulatory systems need to cope with stochastic noise to fine tune their function close to bifurcation points. Here, we study stability properties of this regime in generic systems to demonstrate that cooperative interactions buffer system variability, hampering noise-induced regime shifts. Our analysis also shows that, in the considered cooperativity range, impending regime shifts can be generically detected by statistical early warning signals from distributional data. Our generic framework, based on minimal models, can be used to extract robustness and variability properties of more complex models and empirical data close to criticality.
Our generic framework, based on minimal models, can be used to extract robustness and variability properties of more complex models and empirical data close to criticality.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Systems Control (Goncalves Group)
Disciplines :
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
PROVERBIO, Daniele ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Control
NORONHA MONTANARI, Arthur ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Control
SKUPIN, Alexander ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Integrative Cell Signalling
GONCALVES, Jorge ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Control
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Buffering variability in cell regulation motifs close to criticality
Date de publication/diffusion :
2022
Titre du périodique :
Physical Review. E
ISSN :
2470-0045
eISSN :
2470-0053
Maison d'édition :
American Physical Society, Ridge, Etats-Unis - New York
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Projet FnR :
FNR10907093 - Critical Transitions In Complex Systems: From Theory To Applications, 2015 (01/11/2016-30/04/2023) - Jorge Gonçalves
D. Angeli Jr., J. E. Ferrell, and E. D. Sontag, Proc. Natl. Acad. Sci. USA 101, 1822 (2004) 0027-8424 10.1073/pnas.0308265100.
M. Kheir Gouda, M. Manhart, and G. Balázsi, Proc. Natl. Acad. Sci. 116, 25162 (2019) 0027-8424 10.1073/pnas.1912257116.
J. B. Deris, M. Kim, Z. Zhang, H. Okano, R. Hermsen, A. Groisman, and T. Hwa, Science 342, 1237435 (2013) 0036-8075 10.1126/science.1237435.
L. De Mot, D. Gonze, S. Bessonnard, C. Chazaud, A. Goldbeter, and G. Dupont, Biophys. J. 110, 710 (2016) 0006-3495 10.1016/j.bpj.2015.12.020.
M. Acar, A. Becskei, and A. Van Oudenaarden, Nature (London) 435, 228 (2005) 0028-0836 10.1038/nature03524.
M. T. Guinn, Y. Wan, S. Levovitz, D. Yang, M. R. Rosner, and G. Balázsi, Front. Genet. 11, 586726 (2020) 1664-8021 10.3389/fgene.2020.586726.
S. Huang, Y.-P. Guo, G. May, and T. Enver, Dev. Biol. 305, 695 (2007) 0012-1606 10.1016/j.ydbio.2007.02.036.
J. Fiorentino, M.-E. Torres-Padilla, and A. Scialdone, Annu. Rev. Genet. 54, 167 (2020) 0066-4197 10.1146/annurev-genet-021920-110200.
U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall/CRC, New York, 2019).
S. Tripathi, D. A. Kessler, and H. Levine, Phys. Rev. Lett. 125, 088101 (2020) 0031-9007 10.1103/PhysRevLett.125.088101.
N. Komin and A. Skupin, Curr. Opin. Syst. Biol. 3, 154 (2017) 2452-3100 10.1016/j.coisb.2017.05.010.
M. Kærn, T. C. Elston, W. J. Blake, and J. J. Collins, Nat. Rev. Gen. 6, 451 (2005) 1471-0056 10.1038/nrg1615.
M. Weber and J. Buceta, PLoS One 8, e73487 (2013) 1932-6203 10.1371/journal.pone.0073487.
P. Thomas, N. Popović, and R. Grima, Proc. Natl. Acad. Sci. USA 111, 6994 (2014) 0027-8424 10.1073/pnas.1400049111.
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Science 298, 824 (2002) 0036-8075 10.1126/science.298.5594.824.
E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman, and A. Van Oudenaarden, Nature (London) 427, 737 (2004) 0028-0836 10.1038/nature02298.
P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox, Philos. Trans. R. Soc., A 370, 1166 (2012) 1364-503X 10.1098/rsta.2011.0306.
M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, and S. R. e. a. Carpenter, Nature (London) 461, 53 (2009) 0028-0836 10.1038/nature08227.
T. Mora and W. Bialek, J. Stat. Phys. 144, 268 (2011) 0022-4715 10.1007/s10955-011-0229-4.
M. Mojtahedi, A. Skupin, J. Zhou, I. G. Castaño, R. Y. Leong-Quong, H. Chang, K. Trachana, A. Giuliani, and S. Huang, PLoS Biol. 14, e2000640 (2016) 1545-7885 10.1371/journal.pbio.2000640.
Y. Sharma, P. S. Dutta, and A. Gupta, Phys. Rev. E 93, 032404 (2016) 2470-0045 10.1103/PhysRevE.93.032404.
J. Scholz, J. Kelso, and G. Schöner, Phys. Lett. A 123, 390 (1987) 0375-9601 10.1016/0375-9601(87)90038-7.
T. A. Byrd, A. Erez, R. M. Vogel, C. Peterson, M. Vennettilli, G. Altan-Bonnet, and A. Mugler, Phys. Rev. E 100, 022415 (2019) 2470-0045 10.1103/PhysRevE.100.022415.
L. Dai, K. S. Korolev, and J. Gore, Proc. Natl. Acad. Sci. USA 112, 10056 (2015) 0027-8424 10.1073/pnas.1418415112.
V. Siciliano, I. Garzilli, C. Fracassi, S. Criscuolo, S. Ventre, and D. Di Bernardo, Nat. Commun. 4, 2364 (2013) 2041-1723 10.1038/ncomms3364.
I. Lestas, G. Vinnicombe, and J. Paulsson, Nature (London) 467, 174 (2010) 0028-0836 10.1038/nature09333.
D. Del Vecchio, A. J. Dy, and Y. Qian, J. R. Soc., Interface 13, 20160380 (2016) 1742-5689 10.1098/rsif.2016.0380.