Article (Périodiques scientifiques)
A generalization of Bohr-Mollerup's theorem for higher order convex functions: a tutorial
MARICHAL, Jean-Luc; Zenaïdi, Naïm
2024In Aequationes Mathematicae, 98 (2), p. 455–481
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
PV-AGeneralizationOfBohrMollerupTutorial.pdf
Postprint Éditeur (408.23 kB)
Publisher postprint
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Difference equation; higher order convexity; Bohr-Mollerup's theorem; principal indefinite sum; Gauss' limit; Euler product form; Raabe's formula; Binet's function; Stirling's formula; Gauss' multiplication formula; Euler's constant; gamma and polygamma functions
Résumé :
[en] In its additive version, Bohr-Mollerup's remarkable theorem states that the unique (up to an additive constant) convex solution $f(x)$ to the equation $\Delta f(x)=\ln x$ on the open half-line $(0,\infty)$ is the log-gamma function $f(x)=\ln\Gamma(x)$, where $\Delta$ denotes the classical difference operator and $\Gamma(x)$ denotes the Euler gamma function. In a recently published open access book, the authors provided and illustrated a far-reaching generalization of Bohr-Mollerup's theorem by considering the functional equation $\Delta f(x)=g(x)$, where $g$ can be chosen from a wide and rich class of functions that have convexity or concavity properties of any order. They also showed that the solutions $f(x)$ arising from this generalization satisfy counterparts of many properties of the log-gamma function (or equivalently, the gamma function), including analogues of Bohr-Mollerup's theorem itself, Burnside's formula, Euler's infinite product, Euler's reflection formula, Gauss' limit, Gauss' multiplication formula, Gautschi's inequality, Legendre's duplication formula, Raabe's formula, Stirling's formula, Wallis's product formula, Weierstrass' infinite product, and Wendel's inequality for the gamma function. In this paper, we review the main results of this new and intriguing theory and provide an illustrative application.
Disciplines :
Mathématiques
Auteur, co-auteur :
MARICHAL, Jean-Luc ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Zenaïdi, Naïm;  University of Liège, Department of Mathematics, Liège, Belgium
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A generalization of Bohr-Mollerup's theorem for higher order convex functions: a tutorial
Date de publication/diffusion :
29 mars 2024
Titre du périodique :
Aequationes Mathematicae
ISSN :
0001-9054
eISSN :
1420-8903
Maison d'édition :
Birkhauser Verlag, Basel, Suisse
Volume/Tome :
98
Fascicule/Saison :
2
Pagination :
455–481
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
URL complémentaire :
Organisme subsidiant :
University of Luxembourg - UL
Commentaire :
This paper is a reference tutorial/summary of an open access monograph published in the Springer Developments in Mathematics. This monograph can be downloaded at the following address: https://link.springer.com/book/9783030950873
Disponible sur ORBilu :
depuis le 27 juillet 2022

Statistiques


Nombre de vues
313 (dont 24 Unilu)
Nombre de téléchargements
378 (dont 13 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu