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A generalization of Bohr–Mollerup’s theorem for higher order
convex functions: a tutorial
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Abstract. In its additive version, Bohr–Mollerup’s remarkable theorem states that the unique
(up to an additive constant) convex solution f(x) to the equation Δf(x) = ln x on the open
half-line (0, ∞) is the log-gamma function f(x) = ln Γ(x), where Δ denotes the classical dif-
ference operator and Γ(x) denotes the Euler gamma function. In a recently published open
access book, the authors provided and illustrated a far-reaching generalization of Bohr–
Mollerup’s theorem by considering the functional equation Δf(x) = g(x), where g can be
chosen from a wide and rich class of functions that have convexity or concavity proper-
ties of any order. They also showed that the solutions f(x) arising from this generalization
satisfy counterparts of many properties of the log-gamma function (or equivalently, the
gamma function), including analogues of Bohr–Mollerup’s theorem itself, Burnside’s for-
mula, Euler’s infinite product, Euler’s reflection formula, Gauss’ limit, Gauss’ multiplication
formula, Gautschi’s inequality, Legendre’s duplication formula, Raabe’s formula, Stirling’s
formula, Wallis’s product formula, Weierstrass’ infinite product, and Wendel’s inequality for
the gamma function. In this paper, we review the main results of this new and intriguing
theory and provide an illustrative application.

Mathematics Subject Classification. 26A51, 33B15, 33B20, 39A06, 39B22.

Keywords. Difference equation, Higher order convexity, Bohr–Mollerup’s theorem, Principal

indefinite sum, Gauss’ limit, Euler product form, Raabe’s formula, Binet’s function, Stirling’s

formula, Gauss’ multiplication formula, Euler’s constant, Gamma and polygamma functions.

1. Introduction

One of the best-known special functions of mathematical analysis is the Euler
gamma function. Its restriction to the real open half-line R+ = (0,∞) is usually
defined as the following improper integral (see, e.g., Srinivasan [15])

Γ(x) =

∞∫

0

tx−1 e−t dt, x > 0.
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It is well known and easily seen that this function satisfies Γ(1) = 1 and
the identity (using integration by parts)

Γ(x + 1) = xΓ(x), x > 0.

In 1922, Bohr and Mollerup [6] established the following simple, but re-
markable characterization of the gamma function.

Theorem 1.1. (Bohr–Mollerup’s theorem) The gamma function is the unique
logarithmically convex solution f : R+ → R+ satisfying f(1) = 1 to the equa-
tion

f(x + 1) = x f(x), x > 0. (1)

A decade later, Artin [3] (see also Artin [4]) investigated and simplified
the proof of this characterization, which has become also known as the Bohr–
Mollerup–Artin theorem. He also showed that many classical properties of the
gamma function are actually very elementary consequences of this theorem
and its proof. Among these properties, recall the Stirling formula

lim
x→∞

Γ(x)√
2π e−x xx− 1

2
= 1, (2)

the Gauss multiplication formula

m−1∏
j=0

Γ
(

x + j

m

)
=

Γ(x)
mx− 1

2
(2π)

m−1
2 , x > 0, m = 1, 2, . . . , (3)

and the Gauss limit

Γ(x) = lim
n→∞

n!nx

x(x + 1) · · · (x + n)
, x > 0. (4)

It is not difficult to see that Bohr–Mollerup’s theorem above can be slightly
generalized as follows.

Theorem 1.2. (Bohr–Mollerup’s theorem) All logarithmically convex solutions
f : R+ → R+ to Eq. (1) are of the form f(x) = cΓ(x), where c > 0.

Indeed, if f : R+ → R+ is a logarithmically convex solution to Eq. (1),
then clearly so is the function f/f(1), which must be the gamma function by
Bohr–Mollerup’s Theorem 1.1.

The following theorem provides a reformulation of the latter result using
the additive notation, where Δ stands for the classical difference operator.

Theorem 1.3. (Additive version of Bohr–Mollerup’s theorem) All convex so-
lutions f : R+ → R to the equation Δf(x) = lnx are of the form f(x) =
c + ln Γ(x), where c ∈ R.
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It is natural to ask whether analogues of Theorem 1.3 can be obtained
by replacing the logarithm function in the difference equation Δf(x) = lnx
with any other real function. In a recently published monograph [12], the au-
thors showed that such analogues do exist for a very wide variety of functions.
We now state this result in the following uniqueness theorem, which actually
constitutes a major generalization of Bohr–Mollerup’s theorem.

Recall first that a function f : I → R, where I is any nontrivial real interval,
is said to be p-convex (resp. p-concave) for some integer p ≥ 0 if for any
pairwise distinct points x0, x1, . . . , xp+1 in I we have that

f [x0, x1, . . . , xp+1] ≥ 0 (resp. f [x0, x1, . . . , xp+1] ≤ 0),

where the symbol f [x0, x1, . . . , xp+1] stands for the divided difference of f at
the points x0, x1, . . . , xp+1. It can be shown that, if I is an open interval and
f is p times differentiable, then it is p-convex (resp. p-concave) if and only if
f (p) is increasing (resp. decreasing). For background and references, see, e.g.,
[12, Section 2.2].

We say that a function f : R+ → R is eventually p-convex (resp. eventually
p-concave) if it is p-convex (resp. p-concave) in some neighborhood of infinity.

For any integers p ≥ 0 and n ≥ 1, and any function g : R+ → R, we define
the function fp

n[g] : R+ → R by the equation

fp
n[g](x) =

n−1∑
k=1

g(k) −
n−1∑
k=0

g(x + k) +
p∑

j=1

(
x
j

)
Δj−1g(n), x > 0.

Theorem 1.4. (Uniqueness) Let p ≥ 0 be an integer and let the function g : R+ →
R have the property that the sequence n �→ Δpg(n) converges to zero. Suppose
that f : R+ → R is an eventually p-convex or eventually p-concave function
satisfying the difference equation Δf = g. Then f is uniquely determined (up
to an additive constant) by g through the equation

f(x) = f(1) + lim
n→∞ fp

n[g](x), x > 0,

and the convergence is uniform on any bounded subset of R+.

Taking p = 1 and g(x) = lnx in Theorem 1.4, we immediately retrieve
both Bohr–Mollerup’s Theorem 1.3 and Gauss’ limit (4). We thus see that
Theorem 1.4 provides a generalization of Bohr–Mollerup’s theorem to a vast
spectrum of functions. The following example, which will be our guiding exam-
ple throughout this paper, provides another illustration of this generalization.

Example 1.5. (The polygamma function ψ−2) Consider the polygamma func-
tion ψ−2 : R+ → R defined by the following equation (see, e.g., Adamchik
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[1])

ψ−2(x) =

x∫

0

ln Γ(t) dt, x > 0.

It is known (see, e.g., Adamchik [1, p. 196] and Remmert [14, p. 46]) that this
function satisfies

ψ−2(1) =
1
2

ln(2π).

Moreover, it is 2-convex since its second derivative is the digamma function ψ,
which is increasing on R+ (see, e.g., Srivastava and Choi [16]). Furthermore,
for any x > 0 we have

Δf(x) =

1∫

0

ln Γ(t) dt +

x+1∫

1

ln Γ(t) dt −
x∫

0

ln Γ(t) dt

= ψ−2(1) +

x∫

0

(ln Γ(t + 1) − ln Γ(t)) dt

= ψ−2(1) +

x∫

0

ln t dt.

Thus, we have Δf = g on R+, where the function g : R+ → R is defined by
the equation

g(x) = x ln x − x +
1
2

ln(2π), x > 0,

and has the property that the sequence n �→ Δ2g(n) converges to zero. It
follows from Theorem 1.4 that the function ψ−2 is the unique (up to an additive
constant) eventually 2-convex solution to the equation Δf = g on R+. ♦

In [12, Chapter 3] we also provided the following result, which gives suffi-
cient conditions on the function g for the existence of an eventually p-convex
or eventually p-concave solution to the difference equation Δf = g.

Theorem 1.6. (Existence) Let p ≥ 0 be an integer and suppose that the function
g : R+ → R is eventually p-convex or eventually p-concave and has the asymp-
totic property that the sequence n �→ Δpg(n) converges to zero. Then there
exists a unique (up to an additive constant) eventually p-convex or eventually
p-concave solution f : R+ → R to the difference equation Δf = g. Moreover,

f(x) = f(1) + lim
n→∞ fp

n[g](x), x > 0, (5)
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and f is p-convex (resp. p-concave) on any unbounded subinterval of R+ on
which g is p-concave (resp. p-convex). Furthermore, the convergence in (5) is
uniform on any bounded subset of R+.

We observe that Theorem 1.6 was first proved in the special case when
p = 0 by John [9]. It was also established in the case when p = 1 by Krull
[10,11] and then in its multiplicative version by Webster [18,19].

We also observe that identity (5) actually provides for the function f an ana-
logue of Gauss’ limit (4) for the gamma function. More generally, for every so-
lution f : R+ → R arising from Theorem 1.6, we presented in [12] counterparts
of various classical properties of the gamma function, including analogues of
Burnside’s formula, Euler’s infinite product, Euler’s reflection formula, Gauss’
limit, Gauss’ multiplication formula, Gautschi’s inequality, Legendre’s duplica-
tion formula, Raabe’s formula, Stirling’s formula, Wallis’s product formula,
Weierstrass’ infinite product, and Wendel’s inequality for the gamma func-
tion. We also introduced and discussed analogues of Binet’s function, Euler’s
constant, Fontana-Mascheroni’s series, Stirling’s constant, Webster’s inequal-
ity, and Webster’s functional equation. We also provided and discussed some
additional properties, including asymptotic equivalences, asymptotic expan-
sion formulas, Taylor series expansion formulas, and Gregory formula-based
series representations.

All these properties, combined with the uniqueness and existence theorems
above, actually offer a unifying setting that enables us to systematically inves-
tigate a very wide variety of functions. This fact was largely discussed in [12]
and even extensively illustrated through various examples, ranging from the
gamma function itself and its best-known variants to important special func-
tions such as the Hurwitz zeta function and the generalized Stieltjes constants.

In the present paper, we provide a summary of the main results of this
new and intriguing theory. We also illustrate these results by applying them
to the polygamma function ψ−2 (see Example 1.5), which will be our guiding
example throughout.

The outline of this paper is as follows. In Sect. 2, we introduce the concept
of the principal indefinite sum from the solutions arising from the existence
Theorem 1.6. In Sects. 3–9, we introduce the analogues of Gauss’ limit, Eu-
ler’s infinite product, Wendel’s inequality-based limit, Raabe’s formula, Bi-
net’s function, Stirling’s formula, Gauss’ multiplication formula, and Euler’s
constant. In Sect. 10, we provide a long list of properties of the polygamma
function ψ−2 that we can derive straightforwardly from this theory. Finally, in
Sect. 11, we give some concluding remarks.

We observe that some alternative improvements of Bohr–Mollerup’s theo-
rem, in which both the convexity property and the asymptotic condition are
somewhat relaxed, have been published in recent years. For a rather compre-
hensive list of references, see [12, Section 3.3]. Since this paper is a tutorial
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focused on the book [12] rather than a survey paper, we will not elaborate
here on these special improvements.

2. Principal indefinite sums

In this section we introduce the map, denoted Σ, that carries any function
g : R+ → R satisfying the assumptions of Theorem 1.6 for some integer p ≥ 0
into the unique function f : R+ → R defined in identity (5) and such that
f(1) = 0. For more details, see [12, Chapter 5].

For any integer p ≥ 0, we let Dp denote the set of functions g : R+ → R

that have the asymptotic property that the sequence n �→ Δpg(n) converges to
zero. We also let Kp denote the set of functions g : R+ → R that are eventually
p-convex or eventually p-concave. We can easily show [12, Chapter 4] that
Dp ⊂ Dp+1 and that Kp ⊃ Kp+1.

Definition 2.1. Let the map Σ: dom(Σ) → ran(Σ), with

dom(Σ) =
⋃
p≥0

(Dp ∩ Kp),

be defined by the condition

g ∈ Dp ∩ Kp ⇒ Σg(x) = lim
n→∞ fp

n[g](x),

where dom(Σ) and ran(Σ) denote the domain and range of Σ, respectively.

We observe that the map Σ is well defined; indeed, if g lies in both sets
Dp ∩ Kp and Dp+1 ∩ Kp+1 for some integer p ≥ 0, then necessarily

lim
n→∞ fp+1

n [g](x) = lim
n→∞ fp

n[g](x), x > 0.

We also readily observe that the map Σ is actually a bijection and its inverse
is the restriction to ran(Σ) of the difference operator Δ.

We can also show that

ran(Σ) =
⋃
p≥0

{f ∈ Kp : Δf ∈ Dp ∩ Kp and f(1) = 0}.

Interestingly, Theorem 1.4 immediately provides the following characteri-
zation result. If f : R+ → R is a solution to the equation Δf = g, then it is
eventually p-convex or eventually p-concave if and only if f = c + Σg for some
c ∈ R.

Definition 2.2. We say that the principal indefinite sum of a function g lying
in dom(Σ) is the class of functions c + Σg, where c ∈ R.
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Example 2.3. (The log-gamma function) If g(x) = lnx, then we have Σg(x) =
ln Γ(x), and we simply write

Σ ln x = ln Γ(x), x > 0.

Thus, the principal indefinite sum of the function x �→ ln x is the class of
functions x �→ c + ln Γ(x), where c ∈ R. With some abuse of language, we
can say that the principal indefinite sum of the log function is the log-gamma
function. ♦

Example 2.4. (The polygamma function ψ−2) The function g : R+ → R de-
fined by the equation

g(x) = x ln x − x +
1
2

ln(2π), x > 0,

clearly lies in D2 ∩ K2. Its principal indefinite sum is the eventually 2-convex
function

Σg(x) = ψ−2(x) − ψ−2(1), x > 0,

where ψ−2 is the polygamma function defined in Example 1.5. ♦

3. Analogue of Gauss’ limit and Eulerian form

If the function g : R+ → R lies in Dp ∩ Kp for some integer p ≥ 0, then by
Definition 2.1 we have

Σg(x) = lim
n→∞ fp

n[g](x), x > 0. (6)

As already discussed above, this latter identity is precisely the analogue of
Gauss’ limit for the gamma function. Moreover, it can be proved that the
sequence n �→ fp

n[g] converges uniformly on any bounded subset of R+ to Σg
(see Theorem 1.6).

More generally, it was shown [12, Section 7.1] that, if g is r times continu-
ously differentiable and lies in Dp ∩ Kmax{p,r} for some integer r ≥ 0, then Σg
is r times continuously differentiable and the sequence n �→ Drfp

n[g] converges
uniformly on any bounded subset of R+ to DrΣg. In particular, both sides of
(6) can be differentiated up to r times and we have

DrΣg(x) = lim
n→∞ Drfp

n[g](x), x > 0.

Moreover, if g is continuous, then the function fp
n[g](x) − Σg(x) can be

integrated on any bounded interval of [0,∞) and the integral converges to
zero as n → ∞ (see [12, Section 5.3]).

Interestingly, the limit in (6) can be equivalently written in a series form.
For instance, when g(x) = lnx, the series representation of Σg, once converted
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into the multiplicative notation, is precisely the following Euler product form
of the gamma function

Γ(x) =
1
x

∞∏
n=1

(1 + 1/n)x

1 + x/n
, x > 0. (7)

This general observation is stated in the next theorem [12, Section 8.1], which
also shows that, under suitable assumptions, the series can be integrated and
differentiated term by term.

Theorem 3.1. (Eulerian form) Let g lie in Dp ∩ Kp for some integer p ≥ 0.
Then the following assertions hold.

(a) For any x > 0 we have

Σg(x) = −g(x) +
p∑

j=1

(
x
j

)
Δj−1g(1) −

∞∑
n=1

⎛
⎝g(x + n) −

p∑
j=0

(
x
j

)
Δjg(n)

⎞
⎠

and the series converges uniformly on any bounded subset of [0,∞).
(b) If g is continuous, then so is Σg and the series above can be integrated

term by term on any bounded interval of [0,∞).
(c) If g is r times continuously differentiable and lies in Kmax{p,r} for some

integer r ≥ 0, then Σg is r times continuously differentiable and the series
above can be differentiated term by term up to r times.

Example 3.2. (The log-gamma function) Consider the functions g(x) = lnx
and Σg(x) = ln Γ(x) given in Example 2.3 with the value p = 1. Then, identity
(6) clearly reduces to the additive version of Gauss’ limit (4), that is

ln Γ(x) = lim
n→∞

(
ln(n − 1)! + x ln n −

n−1∑
k=0

ln(x + k)

)
. (8)

Similarly, using Theorem 3.1 we retrieve the additive version of the Euler
product form (7) of the gamma function, that is

ln Γ(x) = − ln x −
∞∑

n=1

(
ln(x + n) − ln n − x ln

(
1 +

1
n

))
.

Moreover, the convergence is uniform on any bounded subset of R+. ♦

Example 3.3. (The polygamma function ψ−2) Consider the functions g and
Σg given in Example 2.4 with the value p = 2. We first observe that

Δg(n) − ln n → 0 as n → ∞,

and hence (6) yields the following identity
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ψ−2(x) = lim
n→∞

(
− x

n−1∑
k=1

ln k −
n−1∑
k=1

(x + k) ln
(
1 +

x

k

)
− x ln x

+ x (g(n) + n) +
(

x

2

)
ln n

)
,

where the first sum clearly reduces to ln Γ(n). Now, using the additive version
of Stirling’s formula (2), i.e.,

ln Γ(n) − g(n) +
1
2

ln n → 0 as n → ∞,

we can easily see that the previous identity reduces to

ψ−2(x) = lim
n→∞

(
nx − x ln x + (lnn)

x2

2
−

n−1∑
k=1

(x + k) ln
(
1 +

x

k

))
.

Thus, this latter identity is a simplified form of the analogue of Gauss’ limit
for the gamma function. Interestingly, it can also be obtained directly by in-
tegrating both sides of (8). The corresponding Eulerian form can be obtained
similarly; we get

ψ−2(x) = x − x ln x +
∞∑

n=1

(
x +

x2

2
ln

(
1 +

1
n

)
− (x + n) ln

(
1 +

x

n

))
.

Moreover, the convergence is uniform on any bounded subset of R+. ♦

4. The generalized Wendel’s inequality-based limit

For any integer p ≥ 0, any real number a > 0, and any function g : R+ → R,
we define the function ρpa[g] : [0,∞) → R by the equation

ρpa[g](x) = g(x + a) −
p−1∑
j=0

(
x
j

)
Δjg(a), x ≥ 0, (9)

or equivalently,

ρpa[g](x) = g(x + a) − Pp−1[g](a, a + 1, . . . , a + p − 1;x + a), x ≥ 0,

where the function

x �→ Pp−1[g](a, a + 1, . . . , a + p − 1;x)

denotes the unique interpolating polynomial of g with nodes at the p points
a, a+1, . . . , a+p−1. Thus, the quantity ρpa[g](x) is precisely the corresponding
interpolation error at x + a.
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We now present an important convergence result, which was established in
[12, Section 6.1].

Theorem 4.1. (Generalized Wendel’s inequality-based limit) For any integer
p ≥ 0, any real number a ≥ 0, and any function g lying in Dp ∩ Kp, we have

ρp+1
x [Σg](a) → 0 as x → ∞ ,

or equivalently,

Σg(x + a) − Σg(x) −
p∑

j=1

(
a
j

)
Δj−1g(x) → 0 as x → ∞ .

Moreover, if g is r times continuously differentiable and lies in Kmax{p,r} for
some integer r ≥ 0, then this convergence result still holds if we differentiate
the left-hand side with respect to x up to r times.

Applying Theorem 4.1 to the functions g(x) = lnx and Σg(x) = ln Γ(x),
with p = 1, we immediately obtain

ρ2x[Σ ln](a) = ln Γ(x + a) − ln Γ(x) − a ln x (10)

and hence also the following well-known limit for any a ≥ 0 (see, e.g., Titch-
marsh [17])

lim
x→∞

Γ(x + a)
Γ(x)xa

= 1 .

This latter result was also proved by Wendel [20], who first provided the fol-
lowing double inequality

(
1 +

a

x

)a−1

≤ Γ(x + a)
Γ(x)xa

≤ 1 , x > 0 , 0 ≤ a ≤ 1 ,

or equivalently, in the additive notation,

(a − 1) ln
(
1 +

a

x

)
≤ ρ2x[Σ ln](a) ≤ 0 , x > 0 , 0 ≤ a ≤ 1 ,

which explains the name given to Theorem 4.1.

Example 4.2. (The polygamma function ψ−2) Let us apply Theorem 4.1 to
the functions g and Σg given in Example 2.4 with the value p = 2. Observing
that

Δg(x) − ln x → 0 as x → ∞,

we can easily obtain the following limit for any a ≥ 0,

ψ−2(x + a) − ψ−2(x) − a

(
g(x) − 1

2
ln x

)
− a2

2
ln x → 0 as x → ∞.
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Using Stirling’s formula as in Example 3.3, we finally obtain

ψ−2(x + a) − ψ−2(x) − a ln Γ(x) − a2

2
ln x → 0 as x → ∞,

or equivalently,

a∫

0

ln Γ(x + t) dt − a ln Γ(x) − a2

2
ln x → 0 as x → ∞.

♦

5. Analogue of Raabe’s formula

We now introduce a generalization of Raabe’s formula. To this end, we first
define the asymptotic constant σ[g] associated with a continuous function
g : R+ → R lying in dom(Σ) by the equation

σ[g] =

2∫

1

Σg(t) dt =

1∫

0

Σg(t + 1) dt.

For background on this concept, see [12, Section 6.2].
Using this definition, we can immediately derive the following identity

x+1∫

x

Σg(t) dt = σ[g] +

x∫

1

g(t) dt, x > 0. (11)

Indeed, both sides of this identity are functions of x that have the same deriv-
ative and the same value at x = 1.

For instance, when g(x) = lnx, we obtain

σ[g] =

1∫

0

ln Γ(t + 1) dt =

1∫

0

(ln Γ(t) + ln t) dt

= −1 +
1
2

ln(2π).

Moreover, combining this value with (11) we obtain the following more general
identity

x+1∫

x

ln Γ(t) dt = x ln x − x +
1
2

ln(2π). (12)

This latter identity is known by the name Raabe’s formula (see, e.g., [14,
p. 46]). Thus, identity (11) provides for the function Σg an analogue of Raabe’s
formula.



466 J.-L. Marichal, N. Zenäıdi AEM

Example 5.1. (The polygamma function ψ−2) Let us consider the functions g
and Σg given in Example 2.4. One can show [1, p. 196] that

1∫

0

ψ−2(t) dt = lnA +
1
4

ln(2π),

where A is the Glaisher–Kinkelin constant (see, e.g., Finch [7, Section 2.15]).
From this identity we immediately derive (see also [12, Sect. 10.3])

σ[g] =

1∫

0

ψ−2(t + 1) dt − ψ−2(1) =

1∫

0

(ψ−2(t) + g(t)) dt − ψ−2(1)

= lnA +
1
4

ln(2π) − 3
4

.

Identity (11) then provides for the function Σg the following analogue of
Raabe’s formula

x+1∫

x

ψ−2(t) dt = ψ−2(1) + σ[g] +

x∫

1

g(t) dt,

or equivalently,

x+1∫

x

ψ−2(t) dt =
1
2

x2 ln x − 3
4

x2 +
1
4

(2x + 1) ln(2π) + lnA.

♦

6. Generalized Binet’s function

Recall that the Binet function related to the log-gamma function is the func-
tion J : R+ → R defined by the equation (see, e.g., Henrici [8, p. 39])

J(x) = ln Γ(x) − 1
2

ln(2π) + x −
(

x − 1
2

)
ln x, x > 0. (13)

Using identity (10) and Raabe’s formula (12), we can easily provide the fol-
lowing integral form of Binet’s function

J(x) = −
1∫

0

ρ2x[Σ ln](t) dt, x > 0.

This latter formula motivates the following definition, in which we introduce
a very useful generalization of Binet’s function [12, Section 6.3].
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Definition 6.1. (Generalized Binet’s function) For any integer p ≥ 0 and any
continuous function g : R+ → R lying in Dp ∩ Kp, we define the function

Jp+1[Σg] : R+ → R

by the equation

Jp+1[Σg](x) = −
1∫

0

ρp+1
x [Σg](t) dt, x > 0. (14)

We say that the function Jp+1[Σg](x) is the generalized Binet function asso-
ciated with the function Σg and the parameter p + 1.

Taking g(x) = lnx and p = 1 in identity (14), we simply retrieve the Binet
function

J(x) = J2[Σ ln](x)

related to the log-gamma function, as defined in (13).
Now, combining (9) with (11) and (14), we easily obtain the following

explicit form of the generalized Binet function:

Jp+1[Σg](x) = Σg(x) − σ[g] −
x∫

1

g(t) dt +
p∑

j=1

GjΔj−1g(x), x > 0, (15)

where Gj is the jth Gregory coefficient [5,13] defined by

Gj =

1∫

0

(
t
j

)
dt.

Example 6.2. (The polygamma function ψ−2) Consider the functions g and
Σg given in Example 2.4 with the value p = 2. Using identity (15), we obtain
the following generalized Binet function

J3[Σg](x) = ψ−2(x) − 1
12

(x + 1) ln(x + 1) +
1
12

(3x − 1)2

− 1
12

x(6x − 7) ln x − 1
2

x ln(2π) − lnA.

♦

7. Generalized Stirling’s formula

We observe that the Binet function J(x) = J2[Σ ln](x) defined in (13) clearly
satisfies the following identity

Γ(x) =
√

2π xx− 1
2 e−x+J(x)
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and hence Stirling’s formula (2) simply states that J(x) → 0 as x → ∞. This
observation is at the root of the following generalization of Stirling’s formula
[12, Section 6.4].

Theorem 7.1. (Generalized Stirling’s formula) For any integer p ≥ 0 and any
continuous function g : R+ → R lying in Dp ∩ Kp, the function Jp+1[Σg] van-
ishes at infinity. That is, using (15),

Σg(x) −
x∫

1

g(t) dt +
p∑

j=1

GjΔj−1g(x) → σ[g] as x → ∞.

Moreover, if g is r times continuously differentiable and lies in Kmax{p,r} for
some integer r ≥ 0, then this convergence result still holds if we differentiate
both sides with respect to x up to r times.

Thus stated, the generalized Stirling formula enables one to investigate the
asymptotic behavior of the function Σg for large values of its argument. When
g(x) = lnx and p = 1, we immediately retrieve the original Stirling formula
(2).

Example 7.2. (The polygamma function ψ−2) Consider the functions g and
Σg given in Example 2.4 with the value p = 2. The corresponding generalized
Stirling formula states that the function J3[Σg] given in Example 6.2 vanishes
at infinity. Using the fact that

(x + 1) ln(x + 1) − (x + 1) ln x − 1 → 0 as x → ∞,

this result can be restated as follows

ψ−2(x) − 1
12

(6x2 − 6x + 1) ln x +
1
4
(3x − 2)x − 1

2
x ln(2π) → ln A

as x → ∞. Differentiating both sides of this convergence result, we immediately
retrieve the original Stirling formula. ♦

8. Analogue of Gauss’ multiplication formula

The additive version of Gauss’ multiplication formula (3) can be stated as
follows; for any integer m ≥ 1 we have
m−1∑
j=0

ln Γ
(

x + j

m

)
= ln Γ(x) −

(
x − 1

2

)
ln m +

m − 1
2

ln(2π), x > 0.

A generalization of this formula exists for any continuous function Σg lying
in ran(Σ). It is stated in the following theorem [12, Section 8.6].
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Theorem 8.1. (Analogue of Gauss’ multiplication formula) Let m ≥ 1 be an
integer and let g : R+ → R be a continuous function lying in dom(Σ). Define
also the function gm : R+ → R by the equation

gm(x) = g
( x

m

)
, x > 0.

Then the function gm also lies in dom(Σ). Moreover, for any x > 0 we have

m−1∑
j=0

Σg

(
x + j

m

)
= Σgm(x) + mσ[g] − σ[gm] −

m∫

1

gm(t) dt.

Applying Theorem 8.1 to the function g(x) = lnx, we retrieve the original
Gauss multiplication formula in its additive version. Let us now consider the
case of the polygamma function ψ−2.

Example 8.2. (The polygamma function ψ−2) Let us apply Theorem 8.1 to
the functions g and Σg given in Example 2.4 with the value p = 2. For any
integer m ≥ 1, we have

gm(x) =
1
m

g(x) − x
ln m

m
+

m − 1
2m

ln(2π)

and hence

Σgm(x) =
1
m

ψ−2(x) −
(

x

2

)
ln m

m
+

1
2

(
m − 1

m
x − 1

)
ln(2π).

Using Theorem 8.1, after some algebra we obtain the following analogue of
Gauss’ multiplication formula

m−1∑
j=0

ψ−2

(
x + j

m

)
=

1
m

ψ−2(x) − 1
12m

(6x2 − 6x + 1) ln m

+(m − 1) ln(2π)
(

x

2m
+

1
4

)
+

(
m − 1

m

)
ln A.

In particular, setting x = 1 in this identity we obtain

m∑
j=1

ψ−2

(
j

m

)
=

1
4

(m + 1) ln(2π) − 1
12m

ln m +
(

m − 1
m

)
ln A.

♦
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9. Generalized Euler’s constant

Recall that Euler’s constant (also called Euler-Mascheroni constant) is defined
as the limit

γ = lim
n→∞

(
n∑

k=1

1
k

− ln n

)
.

This value actually represents the remainder in the numerical integration of
the function g(x) = 1/x on the interval [1,∞) using the left rectangle method
with the integer nodes k = 1, 2, 3, . . . (see, e.g., Apostol [2]).

A generalization of this value to any continuous function g : R+ → R lying
in dom(Σ) was introduced in [12, Section 6.8] as follows.

Definition 9.1. (Generalized Euler’s constant) Let p ≥ 0 be an integer and let
g : R+ → R be a continuous function lying in Dp∩Kp. If p ≥ 1, we also assume
that g does not lie in Dp−1. The generalized Euler constant associated with
the function g is the number

γ[g] = −Jp+1[Σg](1),

or equivalently, using (15),

γ[g] = σ[g] −
p∑

j=1

Gj Δj−1g(1).

This definition can be justified by the following geometric interpretation.
We can prove [12, Section 6.8] that

γ[g] =

∞∫

1

(
P p[g](t) − g(t)

)
dt, (16)

where P p[g] : [1,∞) → R denotes the piecewise polynomial function whose
restriction to the interval [k, k + 1), for any integer k ≥ 1, is the interpolating
polynomial of g with nodes at k, k + 1, . . . , k + p; that is,

P p[g](x) = Pp[g](k, k + 1, . . . , k + p;x), x ∈ [k, k + 1).

Moreover, if g is p-convex or p-concave on [1,∞), then the graph of g always
lies over (or always lies under) that of P p[g]; and identity (16) simply tells us
that |γ[g]| is the surface area between the two graphs on [1,∞).

Example 9.2. If g(x) = lnx and p = 1, then we obtain

γ[g] = σ[g] = −1 +
1
2

ln(2π) ≈ −0.081.

The function g is 1-concave and its graph on [1,∞) always lies over that of
the polygonal line P 1[g]. The surface area between the two graphs is precisely
|γ[g]|. ♦
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Example 9.3. If

g(x) = x ln x − x +
1
2

ln(2π)

and p = 2, then we obtain

γ[g] = lnA +
1
6

ln 2 − 1
3

≈ 0.031.

The function g is 2-concave and its graph on [1,∞) always lies under that of
P 2[g]. The surface area between the two graphs is precisely γ[g]. ♦

10. The polygamma function ψ−2

In the previous sections we have stated only some of our main results, start-
ing from the generalization of Bohr–Mollerup’s theorem and the analogue of
Gauss’ limit, and we have illustrated these results using our guiding exam-
ple, the function ψ−2. As mentioned in the introduction, many other results
were established and illustrated in the book [12], where it was also demon-
strated through several examples that all those results actually constitute a
very powerful toolbox for the investigation of a large variety of functions.

To give the reader a taste of the scope of this new theory, in this section we
simply present (without the detailed computations) what we can learn from it
about the polygamma function ψ−2.

Recall first that the polygamma function ψ−2 : R+ → R is defined by the
equation (see Example 1.5)

ψ−2(x) =

x∫

0

ln Γ(t) dt, x > 0.

Moreover, we have the identity (see Example 2.4)

Σg(x) = ψ−2(x) − ψ−2(1), x > 0,

where ψ−2(1) = 1
2 ln(2π) and

g(x) = Δψ−2(x) = x ln x − x + ψ−2(1).

Clearly, the function g lies in D2 and the function Σg lies in D3. Moreover,
both functions are infinitely many times differentiable. Furthermore, we can
show [12, Proposition 5.11] that, for any integer q ≥ 1, the function g is
eventually (2q)-concave and eventually (2q + 1)-convex, while the function Σg
is eventually (2q)-convex and eventually (2q + 1)-concave.
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Remark 10.1. We also observe that the function ψ−2 is strongly related to
the so-called hyperfactorial function (or K-function). Indeed, the latter is the
function K : R+ → R+ defined by the equations

ln K(x) = ζ ′(−1, x) − ζ ′(−1)
=

(
x
2

)
+ ψ−2(x) − xψ−2(1) for x > 0,

where ζ(s, x) denotes the Hurwitz zeta function and ζ ′(s, x) denotes its de-
rivative with respect to the variable s (see, e.g., [1, p. 196] and [12, Section
12.5]). Thus defined, the hyperfactorial function clearly satisfies the identity
Δ ln K(x) = x ln x on R+ (or equivalently, K(x + 1) = xx K(x) on R+).
Moreover, the analogue of Bohr–Mollerup’s theorem states that the function
f(x) = lnK(x) is the unique (up to an additive constant) eventually 2-convex
solution to the equation Δf(x) = x ln x on R+.

10.1. Analogue of Bohr–Mollerup’s theorem

The function ψ−2 can be characterized as follows (see Example 1.5).

Theorem 10.2. A function f : R+ → R is a solution to the equation Δf = g
that lies in K2 if and only if it is of the form f = c + ψ−2, where c ∈ R.

We also have the following alternative characterization [12, Section 3.1].

Theorem 10.3. A function f : R+ → R is a solution to the equation Δf = g
that has the property that, for each x > 0, the sequence

n �→ f(x + n) − f(n) − x ln Γ(n) − x2

2
ln n

converges to zero, if and only if it is of the form f = c + ψ−2, where c ∈ R.

10.2. Asymptotic constant and generalized Euler’s constant

We have the following values (see Examples 5.1 and 9.3)

σ[g] = lnA +
1
4

ln(2π) − 3
4

,

γ[g] = lnA +
1
6

ln 2 − 1
3

.

We also have the following integral representations [12, Sect. 10.3]

σ[g] =
1
2

g(1) − 1
2

∞∫

1

B2({t})
t

dt,

γ[g] =

∞∫

1

(
−g(t) + g(�t�) +

1
2
Δg(�t�) − 1

12
Δ2g(�t�)

)
dt,
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where {t} = t − �t� and B2 is the Bernoulli polynomial B2(x) = x2 − x + 1/6.

10.3. Analogue of Raabe’s formula

We have the following analogue of Raabe’s formula (see Example 5.1)

x+1∫

x

ψ−2(t) dt =
1
2

x2 ln x − 3
4

x2 +
1
4

(2x + 1) ln(2π) + lnA, x > 0.

Moreover, the function f = ψ−2 is the unique continuous solution lying in K2

to the equation (see [12, Section 8.5])

x+1∫

x

f(t) dt =
1
2

x2 ln x − 3
4

x2 +
1
4

(2x + 1) ln(2π) + lnA, x > 0.

10.4. Generalized Binet’s function

We have the following generalized Binet function (see Example 6.2)

J3[Σg](x) = ψ−2(x) − 1
12

(x + 1) ln(x + 1) +
1
12

(3x − 1)2

− 1
12

x(6x − 7) ln x − 1
2

x ln(2π) − lnA.

10.5. Inequalities

The following inequalities hold for any x > 0 and any a ≥ 0.

• Generalized Wendel’s inequality [12, Section 6.1]

0 ≤ sign(a(a − 1)(a − 2))
(
ψ−2(x + a) − ψ−2(x) − a g(x) − (

a
2

)
Δg(x)

)
≤ ∣∣(a−1

2

)∣∣ (Δg(x + a) − Δg(x)) ≤ �a� ∣∣(a−1
2

)∣∣ Δ2g(x).

• Generalized Webster’s inequality [12, Appendix E]

0 ≤ ψ−2(x + a + 1) − ψ−2(x + �a� + 1)

− {a} g(x + �a� + 1) − ({a}
2

)
Δg(x + �a� + 1)

≤ 1
2
{a} (g(x + a) − g(x + �a� + 1) − ({a} − 1)Δg(x + �a� + 1)) ,

where {a} = a − �a�.
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• Generalized Gautschi’s inequality [12, Sect. 10.3]

(a − �a�) ln Γ(x + �a�) ≤ ψ−2(x + a) − ψ−2(x + �a�)
≤ (a − �a�) g(x + �a�),

provided x + �a� ≥ x0, where x0 = 1.461 . . . is the unique positive zero
of the digamma function.

• Generalized Stirling’s formula-based inequality [12, Section 6.4]

0 ≤ −J3[Σg](x) ≤
1∫

0

(
t−1
2

)
(Δg(x + t) − Δg(x)) dt

≤ 5
12

Δ2g(x).

We also have the following double inequality [12, Appendix E]

α(x) ≤ ψ−2(x) ≤ β(x), x > 0,

where

α(x) = lnA − 5
18

+
1
24

x − 5
6

x2 +
1
2

x ln(2π) − 1
12

x(x2 + 12) ln x

+
1
12

(x + 1)(x2 + 5x + 1) ln(x + 1)

and

β(x) = lnA − 1
3

− 3
4

x2 +
1
2

x ln(2π) − x ln x

+
1
12

(x + 1)(6x − 1) ln(x + 1) +
1
12

(x + 2) ln(x + 2).

This double inequality provides a rather fine bracketing of the function ψ−2

for large values of x. Indeed, we have

sup
x∈R+

|β(x) − α(x)| =
1
18

(3 ln 2 − 1) ≈ 0.06

and

β(x) − α(x) =
1

16x
− 13

180x2
+

13
144x3

+ O(x−4) as x → ∞.
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10.6. Generalized Stirling’s and related formulas

For any a ≥ 0, we have the following limits as x → ∞ [12, Sect. 10.3]

ψ−2(x + a) − ψ−2(x) − a ln Γ(x) − a2

2
ln x → 0,

ψ−2(x) − 1
12

(6x2 − 6x + 1) ln x +
1
4
(3x − 2)x − 1

2
x ln(2π) → ln A,

ψ−2(x) − x ln Γ(x) +
1
12

(6x2 − 1) ln x − 1
4

x(x + 2) → ln A − 1
12

,

ψ−2(x + a)
x2 ln x

→ 1
2

.

10.7. Asymptotic expansions

For any integers m ≥ 1 and q ≥ 1, we have the following expansion as x → ∞
[12, Sect. 10.3]

1
m

m−1∑
j=0

ψ−2

(
x +

j

m

)
=

1
2

x2 ln x − 3
4

x2 +
(

1
2

x +
1
4

)
ln(2π) + lnA

+
q∑

k=1

Bk

mkk!
g(k−1)(x) + O(g(q)(x)).

Setting m = 1 in this formula, we obtain

ψ−2(x) =
1
2

x2 ln x − 3
4

x2 +
(

1
2

x +
1
4

)
ln(2π) + lnA

+
q∑

k=1

Bk

k!
g(k−1)(x) + O(g(q)(x)).

For instance, we have

ψ−2(x) =
1
12

(6x2 − 6x + 1) ln x − 1
4
(3x − 2)x +

1
2

x ln(2π) + lnA

+
1

720x2
− 1

5040x4
+

1
10080x6

+ O(x−8).
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10.8. Generalized Liu’s formula

For any x > 0, we have [12, Sect. 10.3]

ψ−2(x) =
1
12

(6x2 − 6x + 1) ln x − 1
4
(3x − 2)x +

1
2

x ln(2π) + lnA

+
1
2

∞∫

0

B2({t})
x + t

dt,

where {t} = t − �t� and B2 is the Bernoulli polynomial B2(x) = x2 − x + 1/6.

10.9. Limit, series, and integral representations

We have the following formulas for any x > 0 (see Example 3.3 and [12, Section
8.2])

• Analogue of Gauss’ limit

ψ−2(x) = lim
n→∞

(
nx − x ln x + (lnn)

x2

2
−

n−1∑
k=1

(x + k) ln
(
1 +

x

k

))
.

• Eulerian form

ψ−2(x) = x − x ln x +
∞∑

n=1

(
x +

x2

2
ln

(
1 +

1
n

)
− (x + n) ln

(
1 +

x

n

))
.

• Weierstrassian form

ψ−2(x) = −γ
x2

2
+ x − x ln x +

∞∑
n=1

(
x +

1
2n

x2 − (x + n) ln
(
1 +

x

n

))
,

where γ is Euler’s constant.
• Integral form

ψ−2(x) =

x∫

0

ln Γ(t) dt = x ln Γ(x) −
x∫

0

t ψ(t) dt,

where ψ(x) = D ln Γ(x) is the digamma function.
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10.10. Analogue of Gauss’ multiplication formula

For any x > 0 and any integer m ≥ 1, we have (see Example 8.2)

m−1∑
j=0

ψ−2

(
x + j

m

)
=

1
m

ψ−2(x) − 1
12m

(6x2 − 6x + 1) ln m

+(m − 1) ln(2π)
(

x

2m
+

1
4

)
+

(
m − 1

m

)
ln A.

Letting x → 0 in this identity, we obtain

m−1∑
j=1

ψ−2

(
j

m

)
= − 1

12m
ln m +

1
4

(m − 1) ln(2π) +
(

m − 1
m

)
ln A.

For instance, when m = 2 we immediately derive the formula

ψ−2

(
1
2

)
=

5
24

ln 2 +
1
4

ln π +
3
2

ln A.

Interestingly, we can also derive the following limit [12, Section 10.3]

lim
m→∞

(
1

m2
ψ−2(mx) − 1

2
x2 ln m

)
=

1
2

x2 ln x − 3
4

x2, x > 0.

10.11. Gregory’s formula-based series representation

For any x > 0, we have [12, Sect. 10.3]

ψ−2(x) =
1
2

x2 ln x − 3
4

x2 +
(

1
2

x +
1
4

)
ln(2π) + lnA −

∞∑
n=1

Gn Δn−1g(x),

where Gn is the nth Gregory coefficient. Setting x = 1 in this identity, we
obtain the following analogue of Fontana-Mascheroni’s series

∞∑
n=1

Gn Δn−1g(1) = σ[g] = lnA +
1
4

ln(2π) − 3
4

.
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10.12. Analogue of Wallis’s product formula

We have the following analogues of Wallis’s product formula [12, Sect. 10.3]

lim
n→∞

(
h1(n) +

2n∑
k=1

(−1)k−1g(k)

)
=

1
12

ln 2 − 3 ln A,

lim
n→∞

(
h2(n) +

2n∑
k=1

(−1)k−1 ψ−2(k)

)
= lnA − 1

12
ln 2,

where

h1(n) =
(

n +
1
4

)
ln n − n(1 − ln 2),

h2(n) = n2 ln(2n) − 3
2

n2 +
1
2

n ln(2π) − 1
12

ln n.

10.13. Generalized Webster’s functional equation

For any integer m ≥ 1, there is a unique solution f : R+ → R to the equation

m−1∑
j=0

f

(
x +

j

m

)
= g(x)

that lies in K2, namely [12, Sect. 10.3]

f(x) = ψ−2

(
x +

1
m

)
− ψ−2(x).

10.14. Analogue of Euler’s series representation of γ

The Taylor series expansion of ψ−2(x + 1) about x = 0 is [12, Sect. 10.3]

ψ−2(x + 1) =
1
2

ln(2π) − γ
x2

2
+

∞∑
n=3

(−1)n−1 ζ(n − 1)
n(n − 1)

xn, |x| < 1,

where z �→ ζ(z) denotes the Riemann zeta function. Integrating both sides
of this equation on (0, 1), we obtain the following analogue of Euler’s series
representation of γ

∞∑
n=2

(−1)n
ζ(n)

n(n + 1)(n + 2)
=

1
6

γ − 3
4

+
1
4

ln(2π) + lnA.
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10.15. Analogue of Euler’s reflection formula

For any x ∈ (0, 1), we have [12, Sect. 10.3]

ψ−2(x) − ψ−2(1 − x) = x ln π − 1
2

ln(2π) −
x∫

0

ln sin(πt) dt.

11. Conclusion

The authors have recently published an open access book [12] that presents a
significant generalization of Bohr–Mollerup’s theorem to higher order convex
functions. This generalization shows that a very rich spectrum of functions sat-
isfy analogues of several classical properties of the gamma function, including
Bohr–Mollerup’s theorem itself, Euler’s reflection formula, Gauss’ multiplica-
tion theorem, Stirling’s formula, and Weierstrass’ canonical factorization.

In this tutorial paper, we have summarized the main results of this new
theory and have illustrated these results as well as many others by applying
them to the polygamma function ψ−2 (i.e., the integral of the log-gamma
function).

Actually, the uniqueness and existence theorems given in the introduction
show that it is usually not very difficult to check whether a given function can
be investigated through our results or not. If so, then we may gain a lot of
insight into this function just by applying those results almost mechanically.

In writing this paper, our hope is to convince the reader that our theory
offers a unifying approach that enables us to systematically handle a wide
variety of functions all at once using elementary means.

Beyond this systematization aspect, this theory introduces some new im-
portant and useful objects. For instance, the map Σ itself is a new concept
that seems to be as fundamental as the basic antiderivative operation. Other
concepts such as the asymptotic constant and the generalized Binet function
also appear to be new fundamental objects that merit further investigation.
These objects are used, e.g., in the remarkable generalized Stirling formula,
but also in many other useful formulas such as the analogue of Raabe’s formula
and the analogue of Gauss’ multiplication formula.

Lastly, this theory also revealed how natural and useful the higher order
convexity properties are. Although these properties seem to be still rather
poorly investigated in mathematical analysis, they clearly play a crucial role
in this setting and hence also merit further study.
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