N. Aizawa & J. Segar, Z2 × Z2 generalizations of N = 2 super Schrödinger algebras and their representations, J. Math. Phys. 58 (2017), no. 11, 113501, 14 pp.
H. Albuquerque & S. Majid, Quasialgebra structure of the octonions, J. Alg. 220 (1999), 188–224.
H. Albuquerque & S. Majid, Clifford algebras obtained by twisting of group algebras, J. Pure Appl. Alg. 171 (2002), 133–148.
C. Bartocci, U. Bruzzo & D. Hernández Ruipérez, The geometry of supermanifolds, Mathematics and its Applications 71, Kluwer Academic Publishers Group, Dordrecht (1991), xx+242 pp.
J. Bernstein, D. Leites, V. Molotkov, & V. Shander, Seminars of Supersymmetries. Vol.1. Algebra and calculus, MCCME, Moscow (2013) (In Russian, the English version is available for perusal).
A.J. Bruce, On a Zn2-graded version of supersymmetry, Symmetry 11 (1) (2019), 116.
A.J. Bruce & S. Duplij, Double-graded supersymmetric quantum mechanics, J. Math. Phys. 61 (6) (2020).
A.J. Bruce & J. Grabowski, Riemannian Structures on Z2n-Manifolds, Mathematics 8(9) (2020), 14-69.
A.J. Bruce & J. Grabowski, Symplectic Zn2-manifolds, J. Geo. Mech. 13(3) (2021), 285-311.
A.J. Bruce & E. Ibarguengoytia, The Graded Differential Geometry of Mixed Symmetry Tensors, Arch. Math. (Brno) 55 (2019), no. 2, 123–137.
A.J. Bruce, E. Ibarguengoytia & N. Poncin The Schwarz-Voronov embedding of Zn2manifolds, SIGMA 16 (2020), 002, 47 pp.
A.J. Bruce & N. Poncin, Functional analytic issues in Zn2-Geometry, Revista de la UMA 60 (2019), no. 2, 611–636.
A. Bruce & N. Poncin, Products in the category of Zn2-manifolds, J. Nonlinear Math. Phys. 26 (2019), no. 3, 420–453.
A. Bruce, E. Ibarguëngoytia & N. Poncin, Linear Zn2-Manifolds and Linear Actions, Symmetry, Integrability and Geometry: Methods and Applications 17 (2021), no. 060, 58 pages.
C. Carmeli, L. Caston & R. Fioresi, Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich (2011).
C. Carmeli, R. Fioresi & V.S. Varadarajan, Super Bundles, Universe 4 (3) (2018), 46 pp.
T. Covolo & N. Poncin, Lectures on Supergeometry, Lecture notes, http://hdl.handle.net/ 10993/14295 (2012).
T. Covolo, Cohomological approach to the graded Berezinian, Noncommut. Geom. 9 (2015), 543–565.
T. Covolo, J. Grabowski & N. Poncin, The category of Zn2-supermanifolds, J. Math. Phys. 57 (2016), no. 7, 073503, 16 pp.
T. Covolo, J. Grabowski & N. Poncin, Z2n-Supergeometry I: Manifolds and Morphisms, arXiv:1408.2755, 28 pp.
T. Covolo, J. Grabowski & N. Poncin, Splitting theorem for Zn2-supermanifolds, J. Geom. Phys. 110 (2016), 393–401.
T. Covolo, S. Kwok & N. Poncin, The Frobenius theorem for Zn2-supermanifolds, arXiv:1608.00961 [math.DG]
T. Covolo, S. Kwok & N. Poncin, Local Forms of Morphisms of Colored Supermanifolds, Journal of Geometry and Physics 168 (2021), 21 pages
T. Covolo, V. Ovsienko & N. Poncin, Higher trace and Berezinian of matrices over a Clifford algebra, J. Geom. Phys. 62 (2012), no. 11, 2294–2319.
P. Deligne & J.W. Morgan, Notes on supersymmetry (following Joseph Bernstein), in: Quantum fields and strings: a course for mathematicians, Vol. 1, 2, Princeton, NJ, 1996/1997, 41–97, Amer. Math. Soc., Providence, RI (1999).
K. Drühl, R. Haag & J.E. Roberts, On parastatistics, Comm. Math. Phys. 18 (1970), 204–226.
I. Gelfand, S. Gelfand, V. Retakh and R.L. Wilson, Quasideterminants, Advances in Mathematics (2005), 56–141.
J. Grabowski, S. Kwok & N. Poncin, Integration on colored supermanifolds, ORBiLU, http://hdl.handle.net/10993/27319 (2016), 21 pp.
H.S. Green, A generalized method of field quantization, Phys. Rev. 90 (1953), 270.
O.W. Greenberg & A.M.L. Messiah, Selection rules for parafields and the absence of paraparticles in nature, Phys. Rev. 138 (2) (1965).
R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52., Springer-Verlag, New York-Heidelberg (1977), xvi+496 pp.
D.A. Leites, Introduction to the theory of supermanifolds, Russ. Math. Surv. 35(1) (1980), 1–64.
S. Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, second edition (1998).
Y. Manin, Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, Springer-Verlag, Berlin (1988), ISBN 3-540-18275.
S. Morier-Genoud & V. Ovsienko, Well, Papa, Can You Multiply Triplets?, The Mathematical Intelligencer 31 (4) (2009), 1–2.
S. Morier-Genoud & V. Ovsienko, Simple graded commutative algebras, J. Alg. 323 (6) (2010), 1649–1664.
N. Poncin, Towards integration on colored supermanifolds, Banach Center Publ. 110 (2016), 201–217.
B.R. Tennison, Sheaf theory, London Mathematical Society Lecture Note Series, No. 20, Cambridge University Press, Cambridge, England-New York-Melbourne (1975), vii+164 pp.
V.N. Tolstoy, Super-de Sitter and alternative super-Poincaré symmetries, in: Lie theory and its applications in physics, Selected papers based on the presentations at the 10th international workshop, LT 10, Varna, Bulgaria, June 17–23 (2013).
F. Toppan, Z22-graded parastatistics in multiparticle quantum Hamiltonians, Phys. A: Math. Theor. 54 (2021), 115–203.
V.S. Varadarajan, Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, 11., New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI (2004).
W. Yang & S. Jing, A new kind of graded Lie algebra and parastatistical supersymmetry, Sci. China Ser. A. 44 (2001), no. 9, 1167–1173.