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Abstract

This text is a short but comprehensive introduction to the basics of supergeometry and
includes some of the recent advances in colored supergeometry. We do not aim for a standard
text that states results and proves them more or less rigorously, but all too often offers little
insight to the uninformed reader. Instead we opted for a smooth exposition of the successive
themes, choosing an order and an approach which are close to the way these pieces of math-
ematics could have been or were discovered, thereby highlighting the reasons for the various
choices and facilitating deeper understanding. We hope that the text will be useful for PhD
students and researchers who wish to acquire knowledge in the geometry of supersymmetry.
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Introduction

The idea of supersymmetry arose due to insufficiency and incoherence of the so-called standard
model of fundamental particles and interactions. The standard model asserts that matter is
composed of twelve fundamental particles, which are called fermions and can be further divided
into six quarks and six leptons. Moreover, the fundamental interactions between these particles,
namely gravitational force, electromagnetic force, weak nuclear interaction and strong nuclear
interaction, can also be viewed as particles. The standard model includes the five particles called
bosons that correspond to the three last interactions, the photon acting as electromagnetic
force, W−, W+ and Z0 acting as weak nuclear interaction and the gluon corresponding to
strong nuclear interaction. In order to explain the concept of mass an additional particle called
Higgs boson is introduced. The Higgs boson appears in the form of a field the other particles
can interact with to obtain mass. However, the standard model does not explain gravity. While
gravitational force is mostly negligible when working with subatomic particles it does play an
important role in the creation of the universe and in the general theory of relativity. Therefore,
it is highly desirable to establish a unified theory that includes all fundamental interactions.
One of the theories that might lead to this goal is supersymmetric string theory. String theories
are based on the idea that elementary particles originate from vibrating strings, so that the
type of vibration determines which of the particles is produced. Supersymmetric means that
each of the particles has a corresponding supersymmetric shadow particle. More precisely, with
each fermion we associate a boson and conversely each boson is coupled with a fermion.

Smooth supermanifolds, or Z2-manifolds, are generalizations of smooth manifolds whose
local coordinates consist of standard commuting variables of Z2-degree 0 and formal anticom-
muting parameters of Z2-degree 1, so that their function sheaf carries a Z2-grading. They are
the core of the geometry of supersymmetry or supergeometry.

Colored supermanifolds, also called Z×n2 -manifolds or Zn2 -manifolds, have function sheaves
with a Zn2 -grading and local coordinates of all Zn2 -degrees that obey the commutation rule
induced by the standard scalar product of Zn2 . They have been introduced in a series of papers
[20, 16, 19, 32] which investigate their category, their differential calculus and part of their
integration theory including the Zn2 -generalization of the Berezinian. The splitting theorem
and the Frobenius theorem for Zn2 -manifolds are proved in [17] and [18], respectively, products
of Zn2 -manifolds and related functional analytic questions are studied in [10] and [9], whereas
[8] and [11] clarify the functor of points approach to Zn2 -manifolds – which is of fundamental
importance in physics – and use it to study Zn2 -Lie group actions on Zn2 -manifolds. Colored
supermanifolds and the corresponding higher supergeometry show significant differences from
classical supergeometry, especially in the proofs of standard supergeometric results, which are
mostly more subtle in the Zn2 -case, and in integration theory, which is significantly different
from the standard supergeometric situation, the novel aspect being the integration with respect
to even non-zero degree parameters.

The motivation to introduce and study Zn2 -geometry is broad. First Zn2 -gradings with n ≥ 2
can be found in the theory of parastatistics [22, 24, 25, 36] and in relation to an alternative
approach to supersymmetry [34]. Higher graded generalizations of the super Schrödinger alge-
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bra and the super Poincaré algebra have appeared in [1] and [6]. Furthermore, such gradings
are used in the theory of mixed symmetry tensors as found in string theory and some formu-
lations of supergravity [7]. It must also be pointed out that quaternions and more general
Clifford algebras can be understood as Zn2 -graded algebras whose vectors commute according
to the above-mentioned Zn2 -scalar-product rule [2, 3, 30, 31]. Finally, any ‘sign rule’ can be
interpreted in terms of a Zn2 -commutation rule [16].

Background information on various sheaf-theoretical concepts can be found in Hartshorne
[26, Chapter II] and Tennison [33]. There are several good introductory books on the theory
of supermanifolds including Bartocci, Bruzzo & Hernández Ruipérez [4], Bernstein, Leites,
Molotkov & Shander [5], Carmeli, Caston & Fioresi [12], Deligne & Morgan [21], Leites [27],
Manin [29] and Varadarajan [35]. For categorical notions we refer to Mac Lane [28].

Our text is structured as follows.

In the first chapter we show how even and odd supercoordinates occur naturally when we
consider a system made of both bosonic and fermionic particles. If we glue such supercoordi-
nate domains together, we get the concept of supermanifold which is reminiscent of a standard
smooth ‘base’ manifold surrounded by a ‘cloud of odd stuff’. Special attention is paid to a care-
ful introduction of a minimum of sheaf-theoretic notions and the definition of supermanifolds
as locally ringed spaces of algebras of superfunctions. The question of the invertibility of a
superfunction naturally leads to the projection of superfunctions onto base manifold functions
and to the kernel J of this projection, which plays a prominent role in the theory of superman-
ifolds M . In particular, J can be interpreted as a neighborhood of the superfunction 0 and so
it induces a basis of neighborhoods of superfunctions that defines the so-called J -adic topology
on the algebra OM of superfunctions. We explain why all supermorphisms ON → OM are
continuous with respect to this topology and prove the fundamental supermorphism theorem,
which makes supergeometry a reasonable theory.

With this short description of the category of supermanifolds in mind, we move to differ-
ential calculus on supermanifolds, contextualizing each concept by means of the corresponding
concept in differential geometry. After a brief digression on the conditions needed to encode
all the information of a sheaf-theoretic geometry (sheaf of vector fields of a manifold) into a
geometry that uses mainly global objects (vector fields defined globally on the manifold), we
define the sheaf of vector fields or tangent sheaf of a supermanifold, avoiding the problem that
supergeometry, unlike differential geometry, lacks a good concept of point. From a local basis
of this locally free tangent sheaf of modules over superfunctions or, equivalently this super-
vector bundle, we derive a basis of the tangent space of a supermanifold at a point m of its
base manifold, thus proceeding in reverse order with respect to differential geometry. We are
now ready to define the derivative at m of a morphism between supermanifolds in the locally
ringed space environment in which we work. Since the superworld is slightly non-commutative
(anticommuting coordinates), the Jacobian matrix of a composite of morphisms between su-
permanifolds turns out to be the product of the Jacobian matrices of the components only if
we change the sign of some entries of the Jacobian matrix, which leads to what we call the
modified Jacobian matrix. Similar requirements that arise in linear superalgebra are mentioned
below. We close this first chapter by a coordinate-dependent but informative approach to the
two possible de Rham complexes of a supermanifold, thereby introducing the so-called Deligne
and Bernstein-Leites sign conventions for the commutation of super differential forms.

The second chapter consists of a brief introduction to higher supergeometry, which high-
lights its relation to other areas of mathematics and physics, and the fact that this non-trivial
generalization of standard supergeometry is not only necessary but also sufficient. As said
above, Zn2 -manifolds are, roughly speaking, supermanifolds whose function sheaf carries a Zn2 -
grading and whose local coordinates are Zn2 -commutative, i.e. commute according to the sign
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rule given by the standard scalar product of the involved Zn2 -degrees. Since therefore even coor-
dinates can anticommute, odd coordinates can commute and coordinates with nonzero degree
need not be nilpotent, local higher superfunctions are necessarily formal power series in the
nonzero degree coordinates with coefficients in the smooth functions with respect to the degree
zero coordinates. The fundamental invertibility criterion of standard superfunctions mentioned
above is based on nilpotency, but remains valid in colored supergeometry despite the loss of
nilpotency, precisely because we use formal power series. Furthermore, the crucial supermor-
phism theorem goes through in the colored situation, since the colored superfunction sheaf is
Hausdorff-complete. We explain in a simple way what this means and how we use it in the
proof of this theorem.

In the last chapter, a discussion of linear Zn2 -algebra provides a basis for the definition of
integrals over Zn2 -manifolds.

For instance, linear maps between free modules over a Zn2 -graded Zn2 -commutative algebra
A are represented by Zn2 -graded block-matrices whose blocks consist of entries belonging to a
term of A whose degree is determined by the position of the block and the Zn2 -degree of the
matrix under consideration. We explain in detail the non-standard definitions of the product
of such a matrix by a scalar in A, of the transpose of such a matrix and of its trace. Connected
to this colored supertrace is its group analogue - the colored Berezinian determinant, or just
Zn2 -Berezinian. We discover this generalization of the standard Berezinian or Z2-Berezinian,
explain its explicit expression in terms of quasideterminants in the sense of Gelfand and Retakh,
and compute through instructive examples.

The focus of the chapter is on the determination of integrable objects, i.e. objects that are
defined over a Zn2 -manifold M and which we can integrate over M in a coordinate-independent
way.

We begin by justifying the definition of oriented smooth manifolds N and by illustrating why
we can integrate global smooth differential forms of highest degree coordinate-independently
over N . We interpret the free module of local top-forms as the determinant module of the free
module of local 1-forms, which is the rank 1 free module over functions whose basis element is
multiplied by the determinant of the Jacobian matrix when we change the local coordinates.
Although there are no top-forms in super- and Zn2 -geometry, for the free Zn2 -module of local
Zn2 -1-forms we find a free rank 1 Zn2 -module over Zn2 -functions whose basis element is multiplied
by the Zn2 -Berezinian of the modified Zn2 -Jacobian matrix if we change the local Zn2 -coordinates.
We explicitly construct this determinant or Zn2 -Berezinian module as the only non-vanishing
cohomology module of a cochain complex of Zn2 -modules. Its elements can be thought of as
local replacements for the non-existing Zn2 -top-forms – substitutes we call local Zn2 -Berezinian
sections – and its basis element can be thought of as local Zn2 -Berezinian volume. The fact that
the Zn2 -Berezinian volume gets multiplied by the Zn2 -Berezinian of the modified Zn2 -Jacobian
matrix if we change the considered Zn2 -coordinates, leads to the coherent sheaf condition that
we have to encode in the definition that glues global Zn2 -Berezinian sections from local ones.
These global sections are the global substitutes for Zn2 -top-forms and should be the objects that
we can integrate over a Zn2 -manifold.

In the case n = 1 the results of the previous paragraph allow us to make the definition of the
integral of a compactly supported global Berezinian section over a supermanifold with oriented
base appear natural. More specifically, this Berezinian integration consists of a differentiation
with respect to the odd or degree 1 formal coordinates and a Lebesgue integration with respect
to the even or degree zero ordinary coordinates. We explain why this integral is coordinate-
independent.

In the case n = 2 the Berezinian integration consists in addition to the differentiation with
respect to the formal coordinates of the odd degrees (0, 1) and (1, 0) and the Lebesgue integra-
tion with respect to the ordinary coordinates of the even degree (0, 0), of an new integration
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with respect to the formal coordinates of the even degree (1, 1). We point out that this new in-
tegration has one degree of freedom and show that the natural choice of this parameter leads to
a coordinate-free definition of the integral of a global Z2

2-Berezinian section over a Z2
2-manifold

with oriented base only if the section is in some sense compactly supported with respect to
the two even coordinate degrees. We find that the obstruction to coordinate-independence is
a universal issue that also appears in standard supergeometry, regardless of which approach to
standard supergeometry one chooses. In fact, the problem lies at the heart of Berezinian inte-
gration: it is the reason for the shortcoming of this theory, which is that one cannot integrate
non-compactly supported sections. As already mentioned, in Z2

2-geometry a first solution is
to integrate only sections that are compactly supported with respect to both even coordinate
degrees. A second solution originates in complex analysis, changes the nature of the objects we
integrate using their localization and leads to technical problems that we can however solve.

We conclude the chapter with a short description of the integration theory of Zn2 -manifolds
of arbitrary height n .



Chapter 1

Introduction to supergeometry

1.1 Supersymmetry

Symmetry is one of the most fundamental concepts in mathematics and physics. Supersymme-
try is a symmetry first proposed in string theory in the 1970s but quickly adopted throughout
theoretical physics, particularly to solve several shortcomings of the Standard Model. She as-
sumes that every particle in this model has a so-called supersymmetric partner particle: every
fermion, i.e. every particle with a half-integer quantum spin, corresponds to a boson partner,
i.e. a particle with an integer spin, and vice versa.

If this is indeed true, the new symmetry fixes the mass of the Higgs boson – a particle
that gives the particles predicted by the Standard Model their mass, and explains why the
mass of the Higgs boson is small and gravity is weak. Also, supersymmetry explains that at
high energies, like at the beginning of the universe, all three Standard Model interactions – the
electromagnetic, weak nuclear and strong nuclear interactions – would have the same intensity,
which would be a partial unified theory of forces. Finally, supersymmetry would explain the
dark matter, which makes up most of the matter in the universe and holds the galaxies together,
but which we cannot see. Furthermore, supersymmetry is needed in string theory, and string
theory comes with built-in quantum gravity!

Despite all these potential successes of supersymmetry, it turns out that the most natural
models of supersymmetry cannot exist, implying that if supersymmetry is true nonetheless,
it only exists at very high energies, but as the initial universe gets colder, the superpartners
are massing and decaying so we can’t even observe them at the energies of the Large Hadron
Collider before the 2019-2022 revamp work. On the other hand, supersymmetry leads to a
lot of beautiful and fascinating mathematics with unifying and simplifying effects. Therefore,
regardless of the fate of string theory and supersymmetry in physics, it is definitely worth
pursuing supergeometry and related ideas.

1.2 Supermanifolds

1.2.1 Smooth superdomains

Knowing that we can interpret the quantum state of a particle as a point in a Hilbert space
and denoting the Hilbert state space of a fermion (respectively a boson) by H1 (respectively
by H0) we can model the situation in the following way. Due to the Pauli exclusion principle,
which asserts that two or more fermions cannot occupy the same quantum state, a system with
q fermions can be represented by the exterior product ∧qH1 and a system of p bosons can be
seen as the symmetric product ∨pH0. Hence, a system of p bosons and q fermions corresponds

1
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to the tensor product

∨pH0 ⊗ ∧qH1. (1.2.1)

Equivalently, we could take the super vector space H0⊕H1 and use its supersymmetric tensor
algebra

⊙(H0 ⊕H1) ∼= ⊙H0 ⊗⊙H1 (1.2.2)

to describe the quantum system. Saying that H0 ⊕ H1 is a super vector space means that it
is Z2-graded. This entails that each homogeneous element, i.e. an element which is either in
H0 or in H1, has a parity: the elements in H0 have parity 0 and are said to be even while
the elements in H1 have parity 1 and are referred to as odd. If H0 (respectively H1) is finite
dimensional and has dimension r (respectively dimension s), we say that the super vector space
H0 ⊕ H1 is of dimension r|s. The supersymmetric algebra structure mentioned above is the
supercommutative tensor product

v ⊙ w = (−1)ṽw̃w ⊙ v,

where v, w are homogeneous elements of parity ṽ, w̃. Note that the supercommutativity
condition implies that odd elements anticommute. Consequently, the square or any higher
power of an odd element is equal to 0. Further, from (1.2.2) we get

⊙(H0 ⊕H1) ∼= ∨H0 ⊗ ∧H1

(see (1.2.1)).

We now look at a specific super vector space, namely

Rp|q = Rp ⊕ Rq.

Let (e0i )i be a basis of even elements for Rp and (e1a)a a basis of odd elements for Rq. Then,
any element in our super vector space can be written uniquely as

p∑
i=1

ci0e
0
i +

q∑
a=1

ca1e
1
a (ci0, c

a
1 ∈ R).

The dual space

(Rp|q)∗ = Hom0(Rp|q, R)⊕ Hom1(Rp|q, R),

is the super vector space of linear maps of parity 0 and linear maps of parity 1. Since real
numbers are always of parity 0 so that R ∼= R ⊕ {0}, the elements in Hom0(Rp|q, R) send
each even basis vector to some real number and each odd basis vector to 0. The maps in
Hom1(Rp|q, R) on the other hand send odd basis vectors to real numbers and even basis vectors
to 0. Therefore it is consistent to define the dual basis (εAl )l,A (for l = 0, 1 and A = 1, ..., p or
A = 1, ..., q depending on l) by

εAl (e
k
B) = δABδ

k
l .

As usual, we can interpret the basis vectors εAl of the dual space (Rp|q)∗ as coordinates in the
original space Rp|q. When l = 0 we get even coordinates xi := εi0 in Rp|q such that

xixj = εi0 ⊙ ε
j
0 = εj0 ⊙ εi0 = xjxi,

i.e. we get standard commutative coordinates. When l = 1 we obtain odd coordinates ξa := εa1
in Rp|q such that

ξaξb = εa1 ⊙ εb1 = −εb1 ⊙ εa1 = −ξbξa, (1.2.3)
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i.e. we obtain anticommutative coordinates. Of course, even coordinates commute with odd
ones:

xiξa = εi0 ⊙ εa1 = εa1 ⊙ εi0 = ξaxi.

When equipped with these supercommutative coordinates

µ := (x, ξ) := (µA) := (xi, ξa) := (x1, . . . , xp, ξ1, . . . , ξq)

the space Rp|q is the prototypical supermanifold or Z2-manifold (with global coordinates) just
as Rp is the prototypical smooth manifold (with global coordinates). Due to their parity and
anticommutativity, the odd coordinates ξa can of course not take any real value. Therefore
they are often referred to as formal parameters and functions like for instance sin(ξa) do not
make sense. Moreover, from (1.2.3) it follows that a monomial like ξ1ξ4ξ2 coincides up to a sign
with the same monomial ξ1ξ2ξ4 in which the parameters are naturally ordered, and that the ξa

are nilpotent so that a monomial like ξ1ξ2ξ1 vanishes just as does every monomial ξa1 . . . ξaq+1

with more than q factors. Therefore a superfunction f of the supermanifold Rp|q must be of
the form

f(x, ξ) = f0(x) +
∑
a

fa(x)ξ
a +

∑
a1<a2

fa1a2(x)ξ
a1ξa2 + · · ·+ f1···q(x)ξ

1 · · · ξq (1.2.4)

=

q∑
k=0

∑
|α|=k

fα(x)ξ
α , (1.2.5)

where α is a multi-index and fα ∈ C∞(U) for some open subset U ∈ Open(Rp) of Rp. As these
superfunctions or Z2-functions are polynomials in the ξ1, . . . , ξq with coefficients in C∞(U), we
denote the algebra of these functions by C∞(U)[ξ1, ..., ξq]. Replacing U by any of its open
subsets V ∈ Open(U) we obtain a sheaf

C∞p|q : Open(U) ∋ V 7→ C∞p|q(V ) = C∞(V )[ξ1, ..., ξq]

of supercommutative associative unital real algebras over U , with obvious restrictions and
gluings. The pair

Up|q := (U, C∞p|q) (1.2.6)

made of the topological space U and the sheaf of supercommutative rings C∞p|q is a super ringed
space which we will call a superdomain or Z2-domain.

1.2.2 Smooth manifolds

Usually we define a smooth n-dimensional manifold M as a set which comes equipped with
an (equivalence class of compatible) atlas(es) whose chart maps are valued in Rn and whose
coordinate transformations are smooth maps. Then the commutative associative unital real
algebra C∞(M) of global functions of M allows us to construct a function sheaf C∞ that takes
open sets U in M and sends them to the corresponding commutative algebra C∞(U). As
algebras are in particular rings the pair (M, C∞) is a ringed space, i.e. a topological space
together with a sheaf of rings on it.

It is well known that the map

M ∋ x 7→ ker(evalx) := {f ∈ C∞(M) : f(x) = 0} ∈ Spm(C∞(M))

that sends every point x of M to the corresponding maximal ideal ker(evalx) in the maximal
spectrum Spm(C∞(M)) of C∞(M) is a 1:1 correspondence. Hence the points of M ‘are’ the
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maximal ideals of C∞(M). Similarly, in Algebraic Geometry the points of an affine variety
or affine scheme are the maximal or prime ideals of the global function ring of this variety or
scheme. Hence it is crucial to also highlight the maximal ideals of the ringed space (M, C∞).
More precisely, for every point x in M the stalk C∞x at x of the sheaf C∞ – the algebra of germs
at x of local functions – is known to have a unique maximal ideal mx given by

mx = {[f ]x : f(x) = 0} ⊆ C∞x . (1.2.7)

This means that (M, C∞) is a locally ringed space (LRS), i.e. a ringed space where all stalks
are local rings. In particular, the trivial smooth n-dimensional manifold Rn with its sheaf of
smooth functions C∞Rn is a LRS. Since M is locally isomorphic to Rn, the LRS (M, C∞) and
the LRS (Rn, C∞Rn) are locally isomorphic as well. This motivates the definition of the category
of LRS that are locally isomorphic as LRS to the LRS (Rn, C∞Rn). It can be shown that this
category is equivalent to the category of smooth n-dimensional manifolds. Thus we have two
equivalent ways to define manifolds – atlases and LRS-s.

Because the atlas definition of a manifold is strongly based on the concept of point x ≃
(x1, . . . , xn) of a manifold and since supermanifolds do not have a proper notion of point (x, ξ)
as the ξ-s are not proper coordinates, we will define smooth supermanifolds of dimension p|q as
locally super ringed spaces (LSRS) that are locally isomorphic as LSRS to the LSRS (Rp, C∞p|q).
Therefore, we start investigating LSRS-s and their (iso)morphisms.

1.2.3 Smooth supermanifolds

Having already mentioned super ringed spaces we now provide a concise definition.

Definition 1.2.1. A super ringed space (SRS) is a pair (M, O) consisting of a topological
spaceM and a sheaf O of supercommutative associative unital algebras over R. If additionally,
for every x ∈ M the stalk Ox of O at x has a unique homogeneous maximal ideal we say that
(M, O) is a locally super ringed space (LSRS).

Let us recall the concept of a homogenous ideal.

Definition 1.2.2. If R = R0 ⊕ R1 is a Z2-graded ring then an ideal I ⊆ R is said to be
homogeneous if it is compatible with the grading in the sense that I = (I ∩R0)⊕ (I ∩R1).

Thus, as said above, every superdomain Up|q = (U, C∞p|q) (U ∈ Open(Rp)) is a SRS. Further-
more, it can be shown that for every x ∈ U the stalk C∞p|q,x of C∞p|q at x has a unique maximal
ideal given by

mx = {[f ]x : f0(x) = 0} ⊆ C∞p|q,x (1.2.8)

(see [14], page 42; see also (1.2.4) and (1.2.7)). As mx is obviously homogeneous, every super-
domain Up|q is a LSRS. This result suggests using Up|q as prototypical supermanifold that all
supermanifolds are modelled onto, analogously to differentiable manifolds that are modelled on
the LRS (Rn, C∞Rn), see paragraph 1.2.2. For this, we need to define morphisms between locally
super ringed spaces. Since morphisms in all categories preserve the data needed to define the
structure of the category’s objects, we get the

Definition 1.2.3. A morphism Φ = (ϕ, ϕ∗) between two (locally) super ringed spaces (M, OM)
and (N, ON) consists of

• a continuous map ϕ :M → N and
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• a family ϕ∗ = {ϕ∗V : V ∈ Open(N)} of morphisms ϕ∗V : ON(V ) → OM(ϕ−1(V )) of
Z2-graded unital R-algebras such that the following diagram (involving the restriction
morphisms ρVW and rVW of the sheaves OM and ON respectively) commutes

ϕ∗V : ON(V ) OM(ϕ−1(V ))

ϕ∗W : ON(W ) OM(ϕ−1(W ))

rVW ρVW

and, in the case of locally super ringed spaces, such that for every m ∈ M the induced
algebra morphism

ϕ∗m :ON,ϕ(m) −→ OM,m

[ g ]ϕ(m) 7−→ [ϕ∗V g ]m

verifies ϕ∗m(mN,ϕ(m)) ⊆ mM,m.

Now we are ready to define supermanifolds.

Definition 1.2.4. A smooth supermanifold or Z2-manifold of dimension p|q is a super ringed
space M = (M, OM), where M is a second countable Hausdorff topological space, such that
for every point m ∈ M there exist open subsets m ∈ U ⊆ M and Up ⊆ Rp as well as an
isomorphism Φ = (ϕ, ϕ∗) of super ringed spaces between the SRS (U, OM |U) and the LSRS

(Up, C∞p|q). The prototypical supermanifolds (Up, C∞p|q) are called Z2-domains.

Remark 1.2.5. Examining the isomorphism Φ : (U, OM |U)→ (Up, C∞p|q) from Definition 1.2.4
it becomes clear that for every m ∈ M the induced map ϕ∗m : C∞p|q,ϕ(m) → OM,m must be an
isomorphism of algebras. Since C∞p|q,ϕ(m) contains a unique homogeneous maximal ideal the same

must hold for OM,m, which means that any supermanifoldM = (M, OM) is a LSRS.

Example 1.2.6. Consider a smooth manifoldM of dimension n and its tangent bundle TM →
M . We turn the total space TM into the supermanifold TM [1], where [1] represents a parity
shift of the fibre coordinates, i.e. we decide to see them as odd parameters and thereby create
a Z2-grading on TM [1]. Letting U ⊆ M be a trivialization domain of TM and denoting the
sheaf of functions on TM [1] by OTM [1] we get

OTM [1](U) = {
n∑
k=0

∑
a1<···<ak

fa1···ak(x) ξ
a1 · · · ξak},

where (ξ1, . . . , ξn) are the odd fibre coordinates, (x1, . . . , xn) are the even base coordinates and
fa1···ak ∈ C∞(U). On the other hand, the differential forms on U are given by

Ω(U) = Γ(U, ∧T ∗M) = {
n∑
k=0

∑
a1<···<ak

ωa1···ak(x) dx
a1 ∧ · · · ∧ dxak},

where (dx1, . . . , dxn) is the local frame of T ∗M and ωa1···ak ∈ C∞(U). Since the wedge product
between these basis elements behaves similarly as the product between the odd parameters we
can identify the two function spaces above and we get that (M, Ω) ∼= TM [1] is a supermanifold.
More generally, any vector bundle E → M over M of rank k can be equipped with a parity
shift in the fibre coordinates and can then be seen as a supermanifold of dimension n|k. It can
even be shown that any supermanifoldM = (M, OM) is isomorphic to E[1] = (M, Γ(∧E∗)) for
some vector bundle E →M . However, this identification is not canonical and the categories of
supermanifolds and vector bundles do not coincide, which will become clear during the study
of morphisms between supermanifolds.
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Consider now the Z2-domain (Rp, C∞p|q) and for every open subset U ⊆ Rp define a mapping

εU : C∞p|q(U)→ C∞(U) that sends a superfunction given by

f(x, ξ) = f0(x) +
∑
a

fa(x)ξ
a +

∑
a1<a2

fa1a2(x)ξ
a1ξa2 + · · ·+ f1···q(x)ξ

1 · · · ξq

to the function f0 ∈ C∞(U). Clearly, εU is a surjective unital algebra morphism. Denoting the
kernel of εU by J (U) we get the following short exact sequence of algebras

0 → J (U) i−→ C∞p|q(U)
εU−→ C∞(U) → 0.

Proposition 1.2.7. A function f ∈ C∞p|q(U) is invertible if and only if εU(f) = f0 ∈ C∞(U) is
invertible.

Proof. If f ∈ C∞p|q(U) has inverse f−1 then the inverse of f0 = εU(f) is given by

f−10 = (εU(f))
−1 = εU(f

−1)

since εU is a unital algebra morphism.
Conversely, assume f0 ∈ C∞(U) has inverse f−10 . Since f is invertible if and only if f−10 f is

invertible we focus on f−10 f = 1 + t, where t consists of terms that involve at least one of the
odd parameters. Then tq+1 = 0 and therefore the inverse of 1 + t is given by 1 +

∑q
m=1 t

m.

Let now U ⊆ Rp be an open subset. Since a function f ∈ C∞(U) is invertible if and only
if f(x) ̸= 0 for all x ∈ U , the value of f at x can be characterized as the unique real number
k such that f − k is not invertible in any neighbourhood of x. Note that a superfunction
g ∈ C∞p|q(U) cannot be evaluated at a point because the coordinates in Rp|q involve formal
parameter. However, in view of Proposition 1.2.7, for every x ∈ U there exists a unique real
number l such that g− l is not invertible in any neighborhood of x. As this is a local property
and all supermanifolds are locally isomorphic to a Z2-domain the same holds for superfunctions
on an arbitrary supermanifold. So ifM = (M, OM) is a supermanifold and V ⊆ M an open
subset then for every s ∈ OM(V ) and for every x ∈ V there exists a unique real number m such
that s−m is not invertible in any neighborhood of x. Now, we can define an algebra morphism
εV on OM(V ) by setting εV (s)(x) := m. Denoting its kernel by J (V ) and its image by F(V )
we obtain the following short exact sequence of algebras

0 → J (V )
iV−→ OM(V )

εV−→ F(V ) → 0.

In fact the kernel JM : V 7→ J (V ) is a subsheaf of OM . The presheaf F is locally isomorphic
to C∞Rp and is thus locally a sheaf. Hence F generates a sheaf F which is locally isomorphic to
C∞Rp and thus implements a p-dimensional smooth manifold structure on M such that C∞M ∼= F,
see subsection 1.2.2. Thus, there exists a short exact sequence

0 → JM
i−→ OM

ε−→ C∞M → 0

of sheaves of supercommutative associative real algebras over M and the projection ε of the
function sheaf OM of the supermanifoldM onto the function sheaf C∞M of the underlying smooth
manifold M can be viewed as an embedding of the base manifold M into the supermanifold
M.

This investigation of the function sheaf of a supermanifold shows, firstly, that a superman-
ifold structure (M, OM) always induces a smooth manifold structure on its base topological
space M and secondly, that M can be embedded intoM, so that supermanifolds can be seen
as smooth manifolds with a cloud of odd “stuff” around them.
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Let us finally mention that in the next subsection we will further explain the role of the
ideals

J (V ) = {s ∈ OM(V ) : εV (s) ≡ 0} ⊆ OM(V )

above (V ∈ Open(M)) and of the unique homogeneous maximal ideals mm ⊆ Om (m ∈M). In
addition, for upcoming applications, we note that, if we choose a supercoordinate chart (x, ξ)
centered at m it follows from (1.2.8) that mm is given by

mm = {[s]m : ε(s)(m) = 0} ∼= {[f ]0 : f(x, ξ) = 0(x) +

q∑
k=1

∑
a1<···<ak

fa1···ak(x) ξ
a1 · · · ξak} ⊆ Om,

where 0(x) are terms of degree at least 1 in x.

1.3 Morphisms of supermanifolds

1.3.1 Continuity

A morphism between two supermanifolds M = (M, OM) and N = (N, ON) (of dimension
p|q and r|s respectively) is a morphism Φ = (ϕ, ϕ∗) of the corresponding locally super ringed
spaces.

We want to investigate continuity properties of such morphisms and start by observing that
the projection ε introduced above commutes with ϕ∗. We denote the projection of ON onto
the sheaf C∞N of smooth functions of N by εN and choose open subsets V ∈ Open(N) and
U = ϕ−1(V ) ∈ Open(M) . Then, if there exist supercoordinates (y, η) on V and (x, ξ) on U ,
we have on the one hand

ϕ∗V (εN,V (f)) = ϕ∗V (f0) = f0 ◦ ϕ|U ∈ C
∞
M (U) (1.3.1)

for every f ∈ ON(V ) . The first equality in (1.3.1) follows from the decomposition of f as in
(1.2.4) and the second one from the fact that the pullback of a classical function f0 on V by
the map ϕ : M → N is given by f0 ◦ ϕ|U . On the other hand, applying the algebra morphism

ϕ∗V to f , decomposed as in (1.2.5), yields

ϕ∗V (f(y, η)) = ϕ∗V (
s∑

k=0

∑
|α|=k

fα(y)η
α) =

s∑
k=0

∑
|α|=k

ϕ∗V (fα(y))ϕ
∗
V (η

1)α1 · · · ϕ∗V (ηs)αs

and since ϕ∗V respects parities ϕ∗V (η
a) is odd for all a ∈ {1, ..., s} and we get that ϕ∗V (f(y, η))

is equal to the sum of ϕ∗V (f0(y)) and terms that include at least one of the odd parameters
ξ1, .., ξq. Therefore,

εM,U(ϕ
∗
V (f)) = ϕ∗V (f0) = f0 ◦ ϕ|U ∈ C

∞
M (U),

which shows in conjunction with (1.3.1) that the following diagram commutes

ON(V ) OM(U)

C∞N (V ) C∞M (U) .

ϕ∗V

εN,V εM,U

ϕ∗V

This result can also be proven in a coordinate-free manner (see [14], p. 46) and entails in
particular that elements g ∈ JN(V ) in the kernel of εN,V verify

εM,U(ϕ
∗
V (g)) = ϕ∗V (εN,V (g)) = 0 .
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Since ϕ∗V (g1 · g2) = ϕ∗V (g1) · ϕ∗V (g2) this does not only imply ϕ∗V (JN(V )) ⊆ JM(U) but also

ϕ∗V (J k
N(V )) ⊆ J k

M(U) (1.3.2)

for every k ∈ {0, ..., s}. Passing from superfunctions in ON(V ) to germs of superfunctions in
ON,ϕ(x) for some x ∈M , (1.3.2) implies

ϕ∗x(m
k
N,ϕ(x)) ⊆ mk

M,x , (1.3.3)

which means in particular that the requirement concerning the preservation of the unique
maximal ideal in Definition 1.2.3 is redundant when defining morphisms between Z2-manifolds.

Focusing on the powers of the ideal JN(V ) we get a decreasing sequence of ideals

ON(V ) = J 0
N(V ) ⊇ J 1

N(V ) ⊇ J 2
N(V ) ⊇ · · · ⊇ J s

N(V ) ⊇ J s+1
N (V ) = {0} . (1.3.4)

Since the powers of JN are sheaves, a section in J q+1
N (V ) vanishes if its restrictions to a cover

of coordinate domains vanish. Hence assume that onW ⊆ V we have coordinates (y, η) .While
ON(W ) contains all superfunctions

f(y, η) = f0(y) +
∑
a

fa(y)η
a +

∑
a1<a2

fa1a2(y)η
a1ηa2 + · · ·+ f1···s(y)η

1 · · · ηs ,

the elements of JN(W ) contain at least one odd parameter in each of their terms. Similarly, the
elements of J 2

N(W ) contain at least two odd parameters in each of their terms and the elements
of J s

N(W ) only contain a term in all of the parameters η1, ..., ηs. Since any combination of s+1
parameters must contain two copies of the same parameter it follows that J s+1

N (W ) = {0} and
that J s+1

N (V ) = {0} . We interpret the sequence (1.3.4) as a sequence of smaller and smaller
neighborhoods of 0 ∈ ON(V ). This motivates the definition of the J -adic topology on ON(V )
by means of the basis

{g + J k
N(V ) : g ∈ ON(V ), 0 ≤ k ≤ s} .

Analogously, OM(U) is equipped with the J -adic topology defined by the basis

{f + J k
M(U) : f ∈ OM(U), 0 ≤ k ≤ q} .

Hence, ϕ∗V : ON(V )→ OM(U) is a map between two topological spaces and we can ask whether
it is continuous. We claim that

ϕ∗−1V (f + J k
M(U)) =

⋃
g∈ϕ∗−1

V (f+J k
M (U))

(g + J k
N(V )) (1.3.5)

for any element f +J k
M(U) in the basis of the J -adic topology of OM(U). Since the right-hand

side of (1.3.5) is open as union of open sets the claim asserts that ϕ∗V is continuous with respect
to the J -adic topology. It is clear that any element g ∈ ϕ∗−1V (f + J k

M(U)) is included in the
union on the right-hand side of (1.3.5) as this union consists of neighborhoods of these very
elements. To show the other inclusion we apply ϕ∗V to an arbitrary neighborhood g + J k

N(V )
of the union and obtain ϕ∗V (g) + ϕ∗V (J k

N(V )) since ϕ∗V is an algebra morphism. While the first
term ϕ∗V (g) is contained in f +J k

M(U) by the way g was chosen, Equation (1.3.2) ensures that
the second term verifies ϕ∗V (J k

N(V )) ⊆ J k
M(U). Taking into account that J k

M(U) is an ideal we
can deduce that ϕ∗V (g) + ϕ∗V (J k

N(V )) is a subset of f + J k
M(U), which concludes the proof of

(1.3.5).
It should be mentioned that in a similar fashion (1.3.3) can be used to endow OM,x and

ON,ϕ(x) for every x ∈ M with a topology called m-adic topology and it can be shown that the
map ϕ∗x is continuous with respect to the m-adic topology.

Furthermore, the continuous map ϕ between the smooth manifolds M and N can be proven
to be smooth by showing that its components ϕi = yi ◦ϕ defined in a neighborhood of any point
x ∈M are smooth functions.
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1.3.2 Fundamental theorem of supermorphisms

Following this discussion of continuity properties of morphisms between supermanifolds we
examine the defining elements of such morphisms, which leads us to the fundamental theorem
of supermorphisms. For this, let

Φ = (ϕ, ϕ∗) :M = (M, OM)→ Vr|s = (V, C∞r,s)

be a morphism between a supermanifoldM of dimension p|q and a Z2-domain Vr|s of dimension
r|s, the latter being equipped with the global coordinate system (y, η). Since smooth functions
of the even coordinates yi are even and the ηa are odd it is possible to assign a canonical
parity to each term of an arbitrary superfunction f ∈ C∞r|s(V ). In particular, yi ∈ C∞r|s(V )0 and

ηa ∈ C∞r|s(V )1 and since ϕ∗ respects parities we observe, denoting ϕ∗V y
i by si and ϕ∗V η

a by σa,
that

si ∈ OM(M)0 , for i ∈ {1, ..., r} , (1.3.6)

σa ∈ OM(M)1 , for a ∈ {1, ..., s} . (1.3.7)

Furthermore, applying the projection map ε to the si yields

εsi = εϕ∗yi = ϕ∗εyi = ϕ∗yi = yi ◦ ϕ = ϕi ∈ C∞(M) ,

which implies
(εs1, ..., εsr)(M) ⊆ V . (1.3.8)

These pullbacks of the coordinates in the superdomain actually completely determine the mor-
phism Φ as stated by the following theorem.

Theorem 1.3.1 (Fundamental theorem of supermorphisms). Being given a supermanifold
M = (M, OM), a superdomain Vr|s = (V, C∞r|s) with coordinates (y, η) and elements

s1, ..., sr, σ1, ..., σs ∈ OM(M)

that verify (1.3.6), (1.3.7) and (1.3.8) then there exists a unique morphism of supermanifolds

Φ = (ϕ, ϕ∗) :M→ Vr|s ,

such that
si = ϕ∗V y

i and σa = ϕ∗V η
a .

While we do not provide a rigorous proof for Theorem 1.3.1 (see [14], page 51), we explain
the idea behind the construction of the morphism Φ after making some useful observations.

Based on the relation
ψ∗yi = yi ◦ ψ = yi(ψ(x)) = yi(x) (1.3.9)

for a morphism ψ between classical smooth manifolds with local coordinates x = (x1, ..., xm)
respectively y = (y1, ..., yn) and adopting the notation yi = yi(x), common in Physics, we decide
to sometimes omit the pullback in expressions like (1.3.9) and in similar ones for morphisms
between smooth supermanifolds. So, for instance, if Φ = (ϕ, ϕ∗) : Rp|q → Rr|s is a morphism
between superdomains endowed with coordinates (x, ξ) respectively (y, η) then we can write

yi = ϕ∗yi = yi0(x) +
∑
α1<α2

yiα1α2
(x)ξα1ξα2 + · · · (1.3.10)

ηa = ϕ∗ηa =
∑
α

ηaα(x)ξ
α +

∑
α1<α2<α3

ηaα1α2α3
(x)ξα1ξα2ξα3 + · · ·
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Remark 1.3.2. In example 1.2.6 we discovered that any Z2-manifold can be identified with
some vector bundle and vice versa. However, we also mentioned that the categories of super-
manifolds and vector bundles do not coincide, which we can justify by the fact that the former
one has much more morphisms. Indeed, any smooth supermanifold is locally isomorphic to
an appropriate Z2-domain and thus any supermorphism locally reads as in (1.3.10), whereas
a morphism between two vector bundles equipped with local coordinates (x, ξ) and (y, η) is
locally given by

yi = yi(x)

ηa =
∑
b

ηab (x)ξ
b .

Example 1.3.3. Consider a morphism Φ = (ϕ, ϕ∗) between supermanifolds that locally reads
as

y = x+ ξ1ξ2 (1.3.11)

η1 = ξ1

η2 = ξ2 .

Using this morphism we want to pull back a superfunction f in the variables (y, η) to a
superfunction in the variables (x, ξ). If f is given by f(y, η) = yη1 then

ϕ∗f = (ϕ∗y)(ϕ∗η1) = (x+ ξ1ξ2)ξ1 = xξ1

clearly is a superfunction in (x, ξ). However, if f(y, η) = sin y then the expression

ϕ∗f = ϕ∗(sin y) = sin(x+ ξ1ξ2)

is not a superfunction since for this we need it to be a smooth function in x multiplied by a
polynomial in ξ1 and ξ2. Recalling that the Taylor series of sin is given by

sin(z + h) =
∞∑
k=0

1

k!
sin(k)(z)hk

for any z, h ∈ R and taking into account that in a superfunction any term in which appear two
or more copies of the same odd parameter vanishes it seems reasonable to define

sin(x+ ξ1ξ2) = sinx+ (cosx)ξ1ξ2 .

This process is called formal Taylor expansion and allows us thanks to nilpotency of odd
parameters to transform classical functions into superfunctions.

Remark 1.3.4. In paragraph 1.2.3 we established for an arbitrary Z2-manifoldM = (M, OM)
the projection ε : OM → C∞M and thus an embedding M ↪−→ M . However, there does not
exist a canonical projection M → M , i.e. a canonical embedding C∞M (U) ↪−→ OM(U) for any
U ∈ Open(M) . Even if U is a coordinate domain and OM(U) ∼= C∞p|q(U) , the embedding is

not coordinate-independent. Indeed, the supercoordinate transformation (1.3.11) induces in
the base the standard coordinate transformation y = x and the classical function sinx = sin y
could be associated with the superfunctions sinx or sin y = sinx+(cosx)ξ1ξ2 . However, there
is a non-canonical embedding of the sheaf C∞M into the sheaf OM , as stated by the Batchelor-
Gawȩdzki theorem.
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Now we construct a morphism Φ = (ϕ, ϕ∗) :M = (M, OM)→ Vr|s = (V, C∞r|s) on the basis

of some elements s1, ..., sr, η1, ..., ηs ∈ OM(M) which satisfy the conditions of Theorem 1.3.1
thus capturing the main idea of the theorem’s proof. On the one hand, the map ϕ : M → V
is defined by ϕ := (εs1, ..., εsr) ∈ C∞(M, V ) . On the other hand, ϕ∗ should be a morphism of
Z2-graded unital R-algebras, so applying it to an arbitrary superfunction must yield

ϕ∗

(∑
α

fα(y)η
α

)
:=
∑
α

ϕ∗(fα(y))(ϕ
∗η1)α1 · · · (ϕ∗ηs)αs .

Furthermore, we have to set ϕ∗ηa := σa for all a ∈ {1, ..., s} to fulfill the assertion of the
theorem and thus focus on the factors ϕ∗(fα(y)), which we define to mean

ϕ∗(fα(y)) := fα(ϕ
∗y) = fα(ϕ

∗y1, ..., ϕ∗yr) = fα(s
1, ..., sr) ,

setting ϕ∗yi := si for i ∈ {1, ..., r} for the same reason as above. Each si is assumed to be
even so if for the sake of simplicity we take M = Rp|q with coordinates (x, ξ) we can write
si = si0(x) + ni for some smooth functions si0 and some nilpotent elements ni featuring an
even number of the odd parameters ξ1, ..., ξq in each of their terms. Applying formal Taylor
expansion, which has been introduced in Example 1.3.3 and can also be used in the case of
several variables based on the Taylor series for functions of several variables, we finally set

fα(s0(x) + n) :=
∑
β

1

β!
(∂βy fα)(s0(x))n

β ,

where the sum is finite due to nilpotency. Therefore, we finally obtain

ϕ∗

(∑
α

fα(y)η
α

)
=
∑
α

∑
β

1

β!
(∂βy fα)(s0(x))n

βσα

and ϕ∗ defined in this way is an algebra morphism that respects parities as can easily be
checked. Furthermore it can be shown that it commutes with the restriction maps and that
any two morphisms satisfying the conditions of Theorem 1.3.1 must coincide and thus our
definition of ϕ and ϕ∗ provides the unique supermorphism whose existence is stated in the
fundamental theorem of supermorphisms.

1.4 Differential calculus on supermanifolds

1.4.1 Sheaves versus global sections

Even though differential geometry is sheaf-theoretic often it is not necessary to use sheaf theory
in order to deal with problems in this domain because global sections and morphisms between
them encode all necessary information and are typically easier to work with than sheaves and
sheaf morphisms. For instance, let M be a smooth manifold and denote by Ω(M) the globally
defined differential forms on M , i.e. the global sections of the exterior bundle of M . Adding
the usual restriction and gluing we can reconstruct the sheaf (M, Ω) of differential forms.
Moreover, in this case the reconstruction of the sheaf morphisms from the morphisms between
global sections works as follows. Any local operator τ : Ω(M)→ Ω(M) can be restricted to an
open subset U ∈ Open(M) thanks to the existence of bump functions. More precisely, for every
point p ∈ U we are able to choose a bump function γ that is equal to 1 in a neighbourhood of
p and vanishes in a neighbourhood of the complement of U in order to define the restriction of
τ to U by setting for all ωU ∈ Ω(U)

τ |U(ωU)(p) := τ(γωU)(p) .
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Then the restriction of τ verifies for all ω ∈ Ω(M)

τ |U(ω|U) = τ(ω)|U
and defining τ |V analogously for some open set V ⊆ U we obtain the following commutative
diagram, which means that from τ we constructed the associated sheaf morphism.

τ |U : Ω(U) Ω(U)

τ |V : Ω(V ) Ω(V )

ρ ρ

When working with real-analytic or holomorphic functions we cannot resort to partitions
of unity as they do not exist and consequently sheaf theory is indispensable in these cases.

The definition of partitions of unity can be adapted to Z2-manifolds and their existence can
be proven. Therefore, in supergeometry it is sometimes possible to work with global sections
rather than using sheaves similarly as in standard differential geometry. Even though sheaves
are in many cases indispensable we can observe that the existence of partitions of unity enables
in certain cases the reconstruction of a sheaf morphism from the corresponding morphism
between global sections. A result that illustrates this observation is Theorem 9 in [10] which
in particular asserts that for every pair of supermanifolds M = (M, OM) and N = (N, ON)
there exists a bijection

β : HomZ2-Man(M, N ) ∋ Φ = (ϕ, ϕ∗) 7→ ϕ∗N ∈ HomZ2-Alg(ON(N), OM(M)) .

1.4.2 Super tangent bundle

In differential geometry a vector field X ∈ Γ(TM) on a smooth manifold M assigns to every
point m ∈ M a tangent vector Xm ∈ TmM ⊆ TM . Since the coordinates on a supermanifold
involve formal parameters there is no good concept of a point in supergeometry, which implies
that the aforementioned definition of vector fields on standard manifolds cannot simply be
transferred to supermanifolds. However, it is well known that the space of vector fields onM is
isomorphic to the space of derivations of smooth funtions on M . Thus, for any U ∈ Open(M)
we can set

TM(U) := Γ(U, TM) ∼= Der C∞(U) (1.4.1)

and note that TM(U) is a real vector space, a C∞(U)-module as well as a Lie algebra over
R. This identification of vector fields with derivations enables us to define Z2-vector fields in
accordance with the definition from standard differential geometry, adapting it slightly in terms
of parity.

From now on letM = (M, O) be a supermanifold of dimension p|q and U ∈ Open(M) an
open set in the underlying base manifold. Analogously to (1.4.1) we set

TM(U) := Z2Der O(U) = Z2Der0 O(U)⊕ Z2Der1 O(U) ,

whose meaning is clarified in the

Definition 1.4.1. A homogeneous superderivation X ∈ Z2DerX̃ O(U) of parity X̃ ∈ {0, 1} is
an R-linear map X : O(U)i → O(U)i+X̃ , i ∈ {0, 1}, that verifies the graded Leibniz rule

X(st) = (Xs)t+ (−1)X̃s̃s(Xt)

for all s, t ∈ O(U) and where s̃ denotes the parity of s.
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Clearly both Z2Der0 O(U) and Z2Der1 O(U) are real vector spaces, which means that
TM(U) = Z2Der O(U) is a real super vector space. Moreover, TM(U) can be endowed with
a super O(U)-module structure and with a super Lie algebra structure, for more details see
[14], page 54.

Thanks to the existence of super bump functions in supergeometry, which are defined anal-
ogously as bump functions in differential geometry, it can be proven that any superderivation
X ∈ TM(U) is a local operator and can be restricted to O(V ) for any V ∈ Open(U) such that
the restriction X|V verifies

X|V (s|V ) = (Xs)|V
for all s ∈ O(U). Then the assignment

TM : Open(M) ∋ U 7→ Z2Der O(U) ∈ Z2Mod(O(U))

together with the restriction maps ρUV : Z2Der O(U) ∋ X 7→ X|V ∈ Z2Der O(V ) defines a
presheaf and even a sheaf of Z2-modules over O and Z2-Lie algebras over R.

Definition 1.4.2. The sheaf TM is referred to as tangent sheaf of the supermanifoldM and
the elements in the O(M)-module TM(M) are called vector fields ofM.

In order to establish the local form of super vector fields we first recall what is meant by a
supercoordinate chart with coordinates (x, ξ) around some point x ∈M . We thereby indicate
the existence of an open subset U ∈ Open(M) containing x such that (U, O|U), the restriction

ofM to U , is isomorphic as super ringed space to the super domain (U, C∞p|q|U) where the open
subset of Rp diffeomorphic to U ∈ Open(M) is also denoted by U . This entails the following
isomorphism between Z2-algebras

O(V ) ∼= C∞p|q(V ) = C∞(V )[ξ1, ..., ξq]

for every V ∈ Open(U), which implies in particular that elements in O(V ) can be viewed as
superfunctions of the form f(x, ξ) =

∑
α fα(x)ξ

a for some fα ∈ C∞(V ).

Now let (U, (x, ξ)) be a super coordinate chart. We define ∂xi ∈ Z2Der0 O(U) for i ∈
{1, .., p} and ∂ξa ∈ Z2Der1 O(U) for a ∈ {1, ..., q} by setting

∂xi

(∑
α

fα(x)ξ
α

)
:=
∑
α

(∂xifα(x))ξ
α

∂ξa

(∑
α

fα(x)ξ
α

)
:=
∑
α

fα(x)∂ξaξ
α

for all
∑

α fα(x)ξ
a ∈ O(U). Morevover, in order to complete the above definition we set

∂ξaξ
b := δba and illustrate what this means for ∂ξaξ

α on the example

∂ξa(ξ
bξa) = (∂ξaξ

b)ξa − ξb(∂ξaξa) = −ξb .

It can be shown (see [14], page 57) that ∂x1 , ..., ∂xp , ∂ξ1 , ..., ∂ξq form a basis of the O(U)-module
TM(U). Firstly, this result implies the existence of a unique decomposition of anyX ∈ TM(U)
into

X =

p∑
i=1

X i∂xi +

q∑
a=1

Xa∂ξa

for some X i, Xa ∈ O(U). Secondly, we obtain that TM is a locally free sheaf of super O-
modules over M , which in conjunction with the fact that there exists a 1-to-1 correspondence
between locally free sheaves of C∞-modules over a standard manifold M and vector bundles
over M motivates the
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Definition 1.4.3. [13] A super vector bundle over a supermanifoldM = (M, O) is a locally
free sheaf of O-modules over M .

In particular, the tangent sheaf TM of M is a super vector bundle over M that we call
super tangent bundle ofM .

1.4.3 Super tangent spaces

Starting again with the well-known corresponding concept in differential geometry we recall
that there exists an isomorphism between the tangent space TmM to a standard manifold M
at one of its points m ∈M and the derivations at m of the stalk C∞m given by

L : TmM ∋ Xm 7→ LXm ∈ Derm C∞m , LXm : C∞m ∋ [f ] 7→ (dmf)(Xm) ∈ R .

The choice of the stalk C∞m as source space of LXm is based on the fact that dm is a local
operator, so that dmf only depends on f in an arbitrarily small neighbourhood of m.

Similarly, for a supermanifoldM = (M, O) we have the

Definition 1.4.4. The super tangent space TmM ofM at m ∈ M is given by the real super
vector space Z2Derm Om of superderivations at m of the Z2-algebra Om, which is defined in
terms of the vector spaces of homogeneous superderivations of parity 0 and 1:

Z2Derm Om = Z2Derm,0 Om ⊕ Z2Derm,1 Om .

A homogeneous super tangent vector Xm at m toM of parity X̃m ∈ {0, 1} is a homogeneous
superderivation of parity X̃m at m of Om, i.e. Xm is an R-linear map Xm : Om → R verifying

Xm([s] · [t]) = Xm[s](ε[t])(m) + (−1)X̃ms̃(ε[s])(m) ·Xm[t]

for all [s], [t] ∈ Om and where s̃ denotes the parity of s, the map ε : Om → C∞m is induced by
the projection ε : O → C∞ and the germ of s at m is denoted by [s].

Considering a point m ∈ M and a neighborhood U of m we observe that any vector
field X ∈ TM(U) induces a tangent vector Xm ∈ TmX, which is of the same parity if X
is homogeneous. Indeed, this tangent vector is given by

Xm = evm ◦ ε ◦X

where evm : C∞m → R is the evaluation morphism at m and ε : Om → C∞m is as above.
Therefore, the basis (∂xi , ∂ξa) induces a basis (∂xi,m, ∂ξa,m) of the super tangent space at

m. This implies in particular that TmM has the same dimension as M and that each super
tangent vector Xm ∈ TmM can be written uniquely as

Xm =

p∑
i=1

X i
m∂xi,m +

q∑
a=1

Xa
m∂ξa,m

for some X i
m, X

a
m ∈ R.

In standard differential geometry the tangent map Tmf of a map f ∈ C∞(M, N) between
two smooth manifolds at a point m ∈M is a linear map between the tangent spaces TmM and
Tf(m)N , which are isomorphic to Derm C∞M,m and Derf(m) C∞N,f(m) respectively. It is given by

Tmf(Xm) = Xm ◦ f ∗m
for any tangent vector Xm : C∞M,m → R and where f ∗m : C∞N,f(m) → C∞M,m denotes the pullback
by f .

Transferring this concept to super geometry we define super tangent maps as follows.
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Definition 1.4.5. The tangent map TmΦ of a morphism Φ = (ϕ, ϕ∗) : M → N between
supermanifolds at a point m ∈M is the super vector space morphism given by

TmΦ : TmM→ Tϕ(m)N
Xm 7→ Xm ◦ ϕ∗ ,

where ϕ∗ is the induced pullback morphism between stalks.

The tangent map of a supermorphism behaves similarly as the tangent map of a morphism
between smooth manifolds when it comes to composition of morphisms. Indeed, let Φ =
(ϕ, ϕ∗) : M → N and Ψ = (ψ, ψ∗) : N → P be morphisms between supermanifolds and
consider a pointm ∈M . The tangent map TmΦ acts on a tangent vector in TmM by composing
it with the pullback between stalks ϕ∗ and similarly for Tϕ(m)Ψ. Since the tangent map of their
composite Tm(Ψ ◦Φ) acts on a tangent vector in TmM by composing it with ϕ∗ ◦ ψ∗ and since
composition is associative we obtain

Tm(Ψ ◦ Φ) = Tϕ(m)Ψ ◦ TmΦ .

If in differential geometry we have a map z = z(y), where y = y(x), then z also depends on x
and for the partial derivative with respect to xi we obtain

∂xiz =
∑
j

∂yjz ∂xiy
j =

∑
j

∂xiy
j ∂yjz .

Now consider a morphism of supermanifolds Φ = (ϕ, ϕ∗) : (M, O) → (N, R) and assume
that V ∈ Open(N) is a supercoordinate domain with coordinates ν = (y, η) such that U ⊂
ϕ−1(V ) ∈ Open(M) is a supercoordinate domain with coordinates µ = (x, ξ). Picking an
element t ∈ R(V ) and calculating the partial derivative of its pullback ϕ∗t ∈ O(U) with
respect to µA it can be verified that

∂µA(ϕ
∗t) =

∑
B

∂µA(ϕ
∗νB)ϕ∗(∂νB t) , (1.4.2)

which coincides with the corresponding result in differential geometry in view of the convention
to omit pullbacks.

Next, we would like to investigate how to represent the tangent map TmΦ : TmM→Tϕ(m)N
by means of a matrix. Here, Φ is a morphism between the Z2-manifoldsM and N of dimension
p|q and r|s respectively and we consider supercoordinate charts around m ∈ M and around
ϕ(m) ∈ N with coordinates µ = (x, ξ) and ν = (y, η) respectively. These supercoordinates
induce the bases

∂µA,m = (∂xi,m, ∂ξa,m) and ∂νB , ϕ(m) = (∂yj , ϕ(m), ∂ηb, ϕ(m))

of TmM and Tϕ(m)N and Φ is locally given by y = y(x, ξ) and η = η(x, ξ). It is easy to check
that the matrix of TmΦ in the bases ∂µA,m and ∂νB , ϕ(m) is as expected the (r + s) × (p + q)
matrix

∂µν|m =

(
∂xy|m ∂ξy|m
∂xη|m ∂ξη|m

)
=

(
ε(∂xy)(m) 0

0 ε(∂ξη)(m)

)
, (1.4.3)

where
ε(∂ξy)(m) = ε(∂xη)(m) = 0 ,

as ε preserves the parity.
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We consider now a second morphism Ψ : N → P and a coordinate chart around ψ(ϕ(m))
with coordinates ω = (z, θ). Since

Tm(Ψ ◦ Φ) = Tϕ(m)Ψ ◦ TmΦ

and since the composite of super vector space morphisms is represented by the product of their
representative matrices, we have

∂µω|m = ∂νω|ϕ(m)
· ∂µν|m .

It is natural to ask whether the same result holds for the Jacobian matrices, i.e. whether

∂µω = ∂νω · ∂µν .

From (1.4.2) it follows that

(∂µω)
C
A = ∂µAω

C

=
∑
B

∂µAν
B∂νBω

C

=
∑
B

±∂νBωC∂µAνB

=
∑
B

±(∂νω)CB(∂µν)BA ,

so that
∂µω ̸= ∂νω · ∂µν . (1.4.4)

However, the hindering signs can be included in the Jacobian matrix:

Definition 1.4.6. The modified super Jacobian matrix of a supermorphism Φ between Z2-
domains Up|q and Vr|s given by y = y(x, ξ) and η = η(x, ξ) is defined as the (r + s)× (p + q)
matrix

Z2 Jac Φ =

(
∂xy −∂ξy
∂xη ∂ξη

)
.

With this definition the result (1.4.4) becomes true, i.e. the modified Jacobian matrix of
the composite of two supermorphisms is the product of the two modified Jacobian matrices:

Z2 Jac (Ψ ◦ Φ) = Z2 Jac Ψ · Z2 Jac Φ . (1.4.5)

Note that the representative matrix of the tangent map in the induced bases of the tangent
spaces is given by

TmΦ ∼= ∂µν|m = Z2 JacΦ|m , (1.4.6)

as the difference between the two matrices disappears in the projection onto the base.

1.4.4 Super differential forms

The C∞(M)-module of differential 1-forms on a smooth manifold M is given by

Ω1(M) = Γ(T ∗M) = HomC∞(M)(Γ(TM), C∞(M)) .

We also set Ω0(M) = C∞(M) and define the linear map

d : Ω0(M)→ Ω1(M)

f 7→ df ,
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where df associates each X ∈ Γ(TM) with the Lie derivative of f in the direction of X. The
map d can be uniquely extended to a degree 1 linear map on the differential k-forms on M
(k ≥ 1) that verifies the graded derivation property with respect to the wedge product of
differential forms and the equation d2 = 0 .

This suggests defining the super differential 1-forms on a supermanifoldM = (M, O) as

Ω1M := HomO(TM, O) .

It should be noted that even though TM and O are sheaves HomO(TM, O) is not made of
sheaf morphisms but is itself a sheaf that associates to every U ∈ Open(M) the super O(U)-
module Ω1M(U) that consists of sheaf morphisms as detailed in the following definition.

Definition 1.4.7. A Z2-differential 1-form ω ∈ Ω1M(U) over U is an O(U)-linear map

ω : TM(U)→ O(U)

along with its O(V )-linear restrictions ω|V : TM(V ) → O(V ) for every V ∈ Open(U) that

verify ω(X)|V = ω|V (X|V ) for all X ∈ TM(U) .

Furthermore, we set Ω0M := O and define the morphism of sheaves of super O-modules
d : Ω0M→ Ω1M as the family of maps

dU : Ω0M(U)→ Ω1M(U)

s 7→ dUs

where U ∈ Open(M) and the differential of a section s ∈ O(U) of parity s̃ is given by

(dUs)(X) := (−1)X̃s̃Xs

for all X ∈ TM(U) of parity X̃ . It is easily checked that the maps dU are O(U)-linear,
commute with restrictions and preserve the parities, so that they define a morphism of sheaves
of O-modules of parity zero.

In search of the coordinate expression of a Z2-differential 1-form ω ∈ Ω1M(U) for some
super coordinate chart U ∈ Open(M) with coordinates µ = (x, ξ) we consider the differential
1-forms dµA, or more explicitly dxi and dξa, induced by the local supercoordinate functions
(for the sake of simplicity we write d instead of dU). They can be shown to form a basis for
Ω1M(U) (see [14], page 66), which means that every ω ∈ Ω1M(U) can uniquely be written as

ω =
∑
i

dxiwi(x, ξ) +
∑
a

dξawa(x, ξ) (1.4.7)

for some wi, wa ∈ O(U) . Moreover, the existence of such a basis implies that Ω1M is a locally
free sheaf of super O-modules, which means in view of Definition 1.4.3 that Ω1M is a Z2-vector
bundle overM of rank p|q and taking into account its relation with TM we often denote this
vector bundle by T ∗M .

Example 1.4.8. Applying ω, decomposed as in (1.4.7), to ∂ξb yields

ω(∂ξb) =
∑
i

dxiwi(x, ξ)(∂ξb) +
∑
a

dξawa(x, ξ)(∂ξb)

=
∑
i

(−1)ω̃·1dxi(∂ξb)wi(x, ξ) +
∑
a

(−1)(ω̃+1)·1dξa(∂ξb)wa(x, ξ)

= (−1)ω̃wb(x, ξ) ,

where the reason for the appearance of the signs (−1)ω̃·1 and (−1)(ω̃+1)·1 is supercommutativity
and the fact that all wi must be of parity ω̃, while all wa must be of parity ω̃ + 1 .
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A similar calculation leads to ω(∂xi) = wi(x, ξ) , hence we can conclude that the sections
wi, wa ∈ O(U) that appear in (1.4.7) are given by

wi(x ξ) = ω(∂xi)

wa(x, ξ) = (−1)ω̃ω(∂ξa) .

It follows that dU can be decomposed as

dU =
∑
i

dxi∂xi +
∑
a

dξa∂ξa =
∑
A

dµA∂µA .

Indeed if f = f(x, ξ) is a superfunction, we obtain

dUf =
∑
i

dxi(dUf)(∂xi) +
∑
a

(−1)f̃dξa(dUf)(∂ξa)

=
∑
i

dxi∂xif +
∑
a

(−1)f̃dξa(−1)f̃∂ξaf

=

(∑
i

dxi∂xi +
∑
a

dξa∂ξa

)
f .

Moving on to the definition of super differential 2-forms, or more generally super differential
k-forms for some k ≥ 0 , we begin by formally extending the operator d : Ω0M→ Ω1M to act
on a Z2-differential 1-form of the form df for some f ∈ O(U) and making sure this yields 0 as
should be expected in view of the definition of the de Rham differential in standard differential
geometry. In the following equation the parity of an element is denoted by the same symbol as
the element itself and Deligne sign convention is used. More details on this convention and an
alternative will be discussed below. We compute

d(df) =
∑
A

dµA ⊗ ∂µA
(∑

B

dµB ⊗ ∂µBf

)
=
∑
AB

(−1)µA·µBdµAdµB ⊗ ∂µA∂µBf

=
∑
AB

(−1)µA·µB(−(−1)µAµBdµBdµA)⊗ ((−1)µAµB∂µB∂µA)f

= −
∑
AB

(−1)µA·µBdµBdµA ⊗ ∂µB∂µAf

= −
∑
AB

(−1)µA·µBdµAdµB ⊗ ∂µA∂µBf

= 0 .

The tensor product symbol ⊗ is used to stress that dµA is a map whose argument is a vector
field and ∂µA a map whose argument is a function. The Koszul sign (−1)µA·µB appears on the
second line of the equation due to the commutation of ∂µA and dµB and the fact that ∂µA is
of parity µA and dµB is of parity µB by definition. The commutation of ∂µA and ∂µB causes

the sign (−1)µA·µB to appear since the basis elements ∂µA are super commutative as can easily
be checked. The basis elements dµA however are chosen to be super anticommutative, which
is part of the Deligne sign convention mentioned above and leads to the apparition of the sign
−(−1)µA·µB . Simplifying the resulting expression and interchanging the roles of A and B it
becomes clear that the super differential 2-form d(df) is equal to its opposite and hence must
be zero as required.
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Above we made use of the Deligne sign convention by letting d be even and letting the
Z2-differential 1-forms dµA be Z2-anticommutative. It can be shown that this convention is
one of two possible settings in which the differential squares to 0 . The alternative is called
Bernstein-Leites sign convention and involves defining d to be odd and the 1-forms dµA to be
Z2-commutative.

To conclude this introduction to supergeometry we specify the local form of a general super
differential 2-form ω ∈ Ω2M(U) for some super coordinate chart U ∈ Open(M) with coordinates
µ = (x, ξ), namely

ω =
∑
AB

dµAdµBωAB(µ)

=
∑
i<j

dxidxjfij(x, ξ) +
∑
i,a

dxidξagia(x, ξ) +
∑
a≤b

dξadξbhab(x, ξ) ,

for some ωAB, fij, gia, hab ∈ O(U) , and the local form of a general super differential k-form
ω ∈ ΩkM(U), i.e.

ω =
∑

|α|+|β|=k

(dx)α(dξ)βωαβ(x, ξ) ,

for some ωαβ ∈ O(U) and where α1, ..., αp ∈ {0, 1} and β1, ..., βq ∈ N . The fact that the same
differential of a formal parameter dξa can appear multiple times in the same term while the
square of any basis element dxi vanishes follows from the Z2-anticommutativity of the elements
dµA .

It will prove important that the super anticommutivity of the differentials dµA reads

dµAdµB = −(−1)µAµBdµBdµA = (−1)1·1+µAµBdµBdµA ,

where the exponent in the last term is the sum of the products of the cohomological degrees of
dµA and dµB and the parities of dµA and dµB respectively. More generally, the product ⊙ (so
far we have omitted the symbol ⊙) of a super differential k-form ω1 ∈ ΩkM(U) and a super
differential l-form ω2 ∈ ΩlM(U) satisfies

ω1 ⊙ ω2 = (−1)k·l+ω̃1ω̃2ω2 ⊙ ω1 ,

where the exponent can be interpreted as the scalar product ⟨(k, ω̃1), (l, ω̃2)⟩ , so that – when
taking the integers k, l modulo 2 – we have an example of a Z2

2-commutative algebra, which
will be discussed in more detail in the next chapter. Using the Bernstein-Leites sign convention
we obtain

ω1 ⊙ ω2 = (−1)(k+ω̃1)(l+ω̃2)ω2 ⊙ ω1 .
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Chapter 2

Introduction to higher supergeometry

Having given an overview of the most important concepts in supergeometry we now move on
to a more general setting, where the Z2-grading is replaced with a Zn2 -grading for an arbitrary
1 ≤ n ∈ N . Here Zn2 means Z×n2 = Z2 × . . . × Z2 (n factors). More precisely, coordinates in
Z2

2-geometry may have the degree

(0, 0), (0, 1), (1, 0) or (1, 1) ,

the degrees of the coordinates in Z3
2-geometry are given by

(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0) and (1, 1, 1)

and hence in Zn2 -geometry coordinates can have 2n different degrees, each with n components
in Z2. If the sum of the components of a Zn2 -degree equals 0 modulo 2 then the corresponding
coordinate is even and otherwise it is odd. The commutation rule for coordinates in Zn2 -geometry
generalizes the one in Z2-geometry since the product of the parities is replaced by the scalar
product of the Zn2 -degrees. For instance this means that if y and η are of degree (1, 0, 1) and
(0, 0, 1) respectively then we get

y · η = (−1)⟨(1, 0, 1), (0, 0, 1)⟩η · y = −η · y .

This new scalar product commutation rule does not have the same properties as the sign rule
in classical supergeometry. Indeed, even coordinates may anticommute, odd coordinates may
commute and non-zero degree even parameters are not nilpotent, all of which can easily be
verified by means of the degrees in Z3

2-geometry.

2.1 Motivation

It is sufficient to study Zn2 -gradings with the above commutation rule since any sign rule for
any finite number m of coordinates has the form of a Zn2 -scalar-product commutation rule for
some n ≤ 2m (see [16], page 4). And it is necessary to study Zn2 -gradings since they appear
among others in Physics, Algebra and Geometry as illustrated by the following examples.

2.1.1 Physics

String theory does not only make use of classical supergeometry but also benefits from results
in Zn2 -geometry for n > 1 . Furthermore, Zn2 -gradings can be found in parastatistical supersym-
metry. More precisely, in classical mechanics the distribution of particles over energy states is
described by the Maxwell-Boltzmann statistics. If quantum effects must be taken into account,
one uses the Bose-Einstein statistics and the Fermi-Dirac statistics when dealing with bosons
and fermions respectively. Parastatistics is one of several alternative statistics and leads to
paraparticles – parabosons and parafermions – and parastatistical supersymmetry.
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2.1.2 Algebra

A Zn2 -commutative algebra for n = 2 can be found when considering super differential forms
on a smooth supermanifold M = (M,OM). Indeed, using the Deligne sign convention the
commutation of ω1 ∈ ΩkM(M) and ω2 ∈ ΩlM(M) is given by

ω1 ⊙ ω2 = (−1)k·l+ω̃1·ω̃2ω2 ⊙ ω1 = (−1)⟨(k′, ω̃1), (l′, ω̃2)⟩ω2 ⊙ ω1 ,

where k′ = k mod 2, l′ = l mod 2 and thus (k′, ω̃1), (l
′, ω̃2) ∈ Z2

2 .

Another example is the algebra H = R⊕ iR⊕ jR⊕ kR of quaternions. The products of the
basis elements are defined by the relations

i2 = j2 = −1 , −ji = ij = k

together with the fact that 1 is the multiplicative identity. Associativity can then be used to
obtain the remaining product rules

ijk = k2 = −1 , −kj = jk = i , −ik = ki = j .

The basis elements {1, i, j, k} verify the scalar product commutation rule introduced above
when assigning them the following even Z3

2-degrees:

deg 1 := (0, 0, 0) , deg i := (0, 1, 1) , deg j := (1, 0, 1) , deg k := (1, 1, 0) .

Therefore, if we denote by (Z3
2)ev the purely even part of the group Z3

2, the algebra H is
(Z3

2)ev-graded and (Z3
2)ev-commutative in the sense of the scalar product commutation rule.

More generally, we can define the Clifford algebra Clp,q(R) of signature (p, q) over R (for
some natural numbers p and q whose sum is denoted by n) as the associative unital R-algebra
generated by (e1, ..., en) ∈ (Rn)n modulo the relations

eiej = −ejei for all i ̸= j

e2i = 1 for i ≤ p

e2j = −1 for j > p .

Then

Clp,q(R) =

{
n∑
k=0

∑
i1<···<ik

Rei1 · · · eik

}
,

which is isomorphic as vector space to the exterior algebra ∧Rn but not as algebra since for
instance e2i = ±1 for all i ∈ {1, ..., n} while ei ∧ ei = 0 for all i ∈ {1, ..., n} . Defining the degree
of ei for every i ∈ {1, ..., n} as

deg ei := (0, ..., 0, 1, 0, ..., 0, 1) ,

where the ones are in positions i and n + 1 of the vector, we can see that Clp,q(R) becomes
a (Zn+1

2 )ev-commutative associative unital R-algebra. This generalizes the previous example
since the algebra H of quaternions is nothing more than the algebra Cl0,3(R) .

2.1.3 Geometry

In geometry Zn2 -manifolds arise naturally as illustrated by the following example. We start with
a smooth supermanifoldM of dimension p|q with supercoordinates (x, ξ) , i.e. coordinates x
of parity 0 and formal parameters ξ of parity 1 . Since a basis of the dual gives coordinates
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on the original space, we denote the supercoordinates of the tangent bundle TM of M by
(x, ξ, dx, dξ) . If we adopt the Bernstein-Leites sign convention, we consider d odd and use the
Z2-commutation rule. This leads to coordinates (x, ξ, dx, dξ) of Z2-degrees (0, 1, 1, 0) and to
a Z2-manifold structure on TM whose function sheaf is over the coordinate domain U given
by

C∞p+q|p+q(U) = C∞(x, dξ)[ξ, dx] .
On the other hand, if we use the Deligne sign convention, we consider d even and use the Z2

2-
commutation rule for the bidegree made of the cohomological degree modulo 2 and the parity.
This leads to coordinates (x, ξ, dx, dξ) of Z2

2-degrees

((0, 0), (0, 1), (1, 0), (1, 1))

and to a Z2
2-manifold structure on TM whose function sheaf is over U given by

C∞p|(q,q,p)(U) = C∞(x)Jdξ, ξ, dxK ,

where Jdξ, ξ, dxK represents formal power series in dξ, ξ and dx . Reasons for the use of formal
power series will be given below. Notice that the Z2

2-degrees carry richer information than the
corresponding Z2-degrees and that in the Z2

2-manifold we do not need consider the differential
dξ of a parameter as a standard base variable as in the corresponding Z2-manifold.

2.2 Smooth Zn2-manifolds

We start by explaining why in the local representations of superfunctions in higher superge-
ometry there appear formal series in the parameters y := dξ , ξ and η := dx . As mentioned
before non-zero degree even coordinates are not nilpotent in Zn2 -geometry. In the case of Z2

2-
coordinates as described above for instance we have

y2 = (−1)⟨(1, 1), (1, 1)⟩y2 = y2 ,

which means that y is not nilpotent. Consider now the coordinate transformation given by

x′ = x+ y2 ξ′ = ξ

y′ = y η′ = η

and apply the formal Taylor expansion to express a function F in x′ as a function in the original
coordinates :

F (x′) = F (x+ y2) =
∑
α

1

α!
(∂αy F )(x)y

2α ,

where the pullback has been omitted. Since y is not nilpotent the sum on the right-hand side is
not necessarily finite and is therefore a power series in y . Combining this with the fact that the
pullback of a superfunction on the target space must be a superfunction on the source space
it becomes clear that superfunctions in higher geometry must be represented by power series.
It should be noted that these power series are formal and thus there is no need to question
whether they converge.

The most general form of a Z2
2-morphism can be found observing that ξ and η are nilpotent

and checking which degree corresponds to different powers of y and to different combinations
of the parameters. It is given by

x′ =
∑
r

fx
′

r (x)y2r +
∑
r

gx
′

r (x)y
2r+1ξη ξ′ =

∑
r

f ξ
′

r (x)y
2rξ +

∑
r

gξ
′

r (x)y
2r+1η

y′ =
∑
r

f y
′

r (x)y2r+1 +
∑
r

gy
′

r (x)y
2rξη η′ =

∑
r

f η
′

r (x)y2rη +
∑
r

gη
′

r (x)y
2r+1ξ .
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Concerning notation we observe that the abelian group Zn2 has 2n elements, 2n−1 of them are
even and the remaining 2n−1 elements are odd. We order these 2n elements by first ordering the
2n−1 even elements lexicographically and then ordering the 2n−1 odd elements lexicographically.
For instance in the case of Z2

2 this standard ordering leads to

((0, 0), (1, 1), (0, 1), (1, 0)) .

Further we denote the i-th element of Zn2 by γi for i ∈ {0, 1, ..., 2n − 1}. As explained above
a Zn2 -manifold can have supercoordinates of all Zn2 -degrees γi . The standard base coordinates
x = (x1, ..., xp) ∈ Rp are all of degree γ0 = (0, ..., 0) while the formal parameters are summarized
as ξ = (ξ1, ..., ξq) and if we denote by qi the number of parameters that have degree γi then
q = (q1, ..., q2n−1) is a tuple of 2n − 1 natural numbers whose sum is q . Thus the sheaf of

superfunctions on a Zn2 -domain Rp|q of dimension p|q is defined as

C∞p|q(U) := C∞(U)Jξ1, ..., ξqK

for every U ∈ Open(Rp) .

Similarly to super ringed spaces and supermanifolds we now define locally Zn2 -ringed spaces
and Zn2 -manifolds.

Definition 2.2.1. A Zn2 -ringed space is a pair (M, OM) consisting of a topological space M
and a sheaf OM of Zn2 -graded Zn2 -commutative (in the sense of the scalar product commutation
rule) associative unital R-algebras over M . If additionally, for every x ∈ M , the stalk Ox has
a unique homogeneous maximal ideal we say that (M, OM) is a locally Zn2 -ringed space.

Definition 2.2.2. A smooth Zn2 -manifold of dimension p|q is a locally Zn2 -ringed spaceM =
(M, OM) , whereM is a second countable Hausdorff topological space, that is locally isomorphic
to the smooth Zn2 -domain Rp|q = (Rp, C∞p|q) .

2.3 Fundamental results in higher supergeometry

Even though most results from supergeometry are also valid in higher supergeometry they often
require different or more subtle proofs, which will be illustrated in this section by means of two
important theorems. Furthermore it should be remarked that while the theory of supergeometry
originates from a model in Physics and thus contains some developments that are not entirely
precise (or even wrong), higher supergeometry has been designed carefully from scratch using
mathematical tools. The main difference between Z2-geometry and Zn2 -geometry can be found
in integration theory, which will be introduced in Chapter 3.

2.3.1 Invertibility of Zn
2-functions

In Proposition 1.2.7 we proved that a superfunction f ∈ C∞p|q(U) is invertible if and only if its

parameter-independent term εU(f) = f0 ∈ C∞(U) is invertible. The corresponding fundamental
result of Zn2 -geometry reads as follows.

Theorem 2.3.1. A Zn2 -function

f ∈ C∞p|q(U) = C∞(U)Jξ1, ..., ξqK

is invertible if and only if f0 ∈ C∞(U), the term of f that does not contain any of the parameters
ξa , is invertible.
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Proof. Similarly to the proof of Proposition 1.2.7 it suffices to show that 1− t is invertible for
any element t ∈ C∞p|q(U) that only consists of terms that contain at least one of the parameters

ξa . Since the proof of Proposition 1.2.7 relies on the fact that the parameters ξa are nilpotent
and in Zn2 -geometry there exist parameters that are not nilpotent it has to be adapted in order
to hold in the Zn2 -context.

We claim that the inverse of 1 − t is given by
∑∞

l=0 t
l ∈ C∞p|q(U) and start by showing that∑∞

l=0 t
l is indeed an element of C∞p|q(U) . If t is given by

t =
∞∑
k=1

∑
|α|=k

fα(x)ξ
α =

∑
|α|≥1

fα(x)ξ
α ,

we have

∞∑
l=0

tl =
∞∑
l=0

∑
|α1|≥1

fα1(x)ξ
α1 · ... ·

∑
|αl|≥1

fαl
(x)ξαl


=
∞∑
l=0

∑
|αi|≥1,∀i

fα1(x) · ... · fαl
(x)ξα1 · ... · ξαl

=
∞∑
l=0

∞∑
|β|=l

 ∑
α1+...+αl=β
|αi|≥1,∀i

±fα1(x) · ... · fαl
(x)

 ξβ

=
∞∑
|β|=0

 |β|∑
l=0

F l
β(x)

 ξβ

=
∑
β

Fβ(x)ξ
β ∈ C∞p|q(U) ,

where F l
β ∈ C∞(U) since the sum over all α1, ..., αl such that α1 + ...+ αl = β and |αi| ≥ 1,∀i

is finite and fαi
∈ C∞(U) for every αi, which in turn implies that Fβ ∈ C∞(U) since the sum∑|β|

l=0 is finite. Moreover ξβ means that the powers ξa
αi,a

of parameters have been regrouped
taking into account first the index a and then the index αi , which might change the sign of
some of the terms due to Zn2 -commutativity. To conclude the proof that

∑∞
l=0 t

l is the inverse
of 1− t we observe that

(1− t)
∞∑
l=0

tl =
∞∑
l=0

tl −
∞∑
l=1

tl = t0 = 1

and analogously
∑∞

l=0 t
l(1 − t) = 1. Hence, while in the super case nilpotency allowed us to

conclude, it is here the fact that we replaced polynomials with formal power series.

2.3.2 Higher morphism theorem

In order to extend Theorem 1.3.1 to higher supergeometry we need to use the fact that OM ,
the structure sheaf of the source space M = (M, OM) of the considered supermorphism,
is Hausdorff-complete. What this means and how it can be used to prove the fundamental
theorem of supermorphisms in Zn2 -geometry is discussed in the following.
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To show that the field of rational numbers Q is not complete we can resort to the sequence
(xn) of rational numbers defined by

x1 = 1, xn+1 =
xn
2

+
1

xn
.

It can easily be verified that (xn) is a Cauchy sequence with respect to the standard norm on
Q given by the absolute value of the difference and that the limit x of (xn) , if it exists, must
satisfy x2 = 2 , which leads to x = ±

√
2 ̸∈ Q . Therefore there exist Cauchy sequences of

rational numbers that do not converge in Q .

To show that the ring R[x] of polynomials in x with coefficients in R evaluated at x ∈ [0, 1]
is not complete consider the sequence of polynomials (pn) given by

pn(x) =
n∑
k=0

(x
2

)k
.

Then (pn) is clearly a Cauchy sequence with respect to the norm || − ||∞ defined by

||p(x)||∞ = sup
x∈[0,1]

|p(x)| .

Since (pn) is a geometric series and |x
2
| < 1 the limit of (pn) is (1 − x

2
)−1 ̸∈ R[x] , proving the

existence of Cauchy sequences in R[x] that do not converge in R[x] .
Since rational functions are real analytic, the algebra RJxK of formal power series should be

complete. Likewise, for every U ∈ Open(M) , the model Zn2 -function algebra C∞p|q(U) should be

complete. However, we first need to equip it with a norm, or equivalently with a topology, and
define Cauchy sequences and convergence of sequences with respect to this norm in order to
allow for a notion of completeness on C∞p|q(U) and thereby on the Zn2 -function algebra OM(U) .

Denoting C∞p|q(U) = C∞(U)JξK by A and the kernel J (U) of the projection εU by I , we consider
the I-adic topology introduced in Section 1.3.1 by means of the basis

{ρ+ Ik : ρ ∈ A, k ∈ N} .

Definition 2.3.2. A sequence (an)n∈N ⊆ A is a Cauchy sequence if for every k ∈ N there exists
l ∈ N such that ar − as ∈ Ik for all r, s ≥ l .

Definition 2.3.3. A sequence (an)n∈N ⊆ A converges to a ∈ A if for every k ∈ N there exists
l ∈ N such that an − a ∈ Ik for all n ≥ l .

Now consider the decreasing sequence of ideals

A ⊇ I ⊇ I2 ⊇ I3 ⊇ · · ·

and take quotients of A to obtain

A/A ← A/I ← A/I2 ← A/I3 ← · · · , (2.3.1)

where A/I represents the superfunctions that do not contain any formal parameters, A/I2
represents the superfunctions consisting of terms with at most one formal parameter and the
arrows denote the natural projections. Then (2.3.1) is an inverse system and it can be shown
that its inverse limit is given by

lim←−−
k

A/Ik ∼= A ,

which constitutes the definition of Hausdorff-completeness: the algebraA is Hausdorff-complete
with respect to the I-adic topology. For more details see [16], page 13. We use without proof
the result that Hausdorff-completeness implies standard completeness, which allows us to make
use of the fact that every Cauchy sequence in A converges to a limit in A in the following proof
of the fundamental theorem of Zn2 -morphisms.
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Theorem 2.3.4. We consider a Zn2 -manifold M = (M, OM) , a Zn2 -domain Vr|s = (V, C∞r|s)
with coordinates (y, η) and Zn2 -functions

s1, ..., sr, σ1, ..., σs ∈ OM(M)

that verify

deg(si) = deg(yi), for i ∈ {1, ..., r} ,
deg(σa) = deg(ηa), for a ∈ {1, ..., s}

and

(εs1, ..., εsr)(M) ⊆ V .

Then there exists a unique morphism of Zn2 -manifolds

Φ = (ϕ, ϕ∗) :M→ Vr|s ,

such that

si = ϕ∗V y
i and σa = ϕ∗V η

a .

Proof. To begin with we show how uniqueness of the algebra morphism

ϕ∗W : C∞r|s(W )→ OM(ϕ−1(W ))

for all W ∈ Open(V ) can be proved in the case of Z2-manifolds in order to highlight the
similarities and differences between both cases. If the required algebra morphism ϕ∗W exists
then its value on a superfunction

∑
α fα(y)η

α ∈ C∞r|s(W ) must necessarily be given by

ϕ∗W

(∑
α

fα(y)η
α

)
= ϕ∗W

 n∑
k=0

∑
|α|=k

fα(y)η
α

 =
n∑
k=0

∑
|α|=k

ϕ∗W (fα(y))(ϕ
∗
Wη)

α .

The pullback ϕ∗Wη is σ by the requirements of the theorem and if fα(y) is a polynomial

∑
β

rαβy
β =

Nα∑
l=0

∑
|β|=l

rαβy
β ,

then we necessarily have

ϕ∗W (fα(y)) = ϕ∗W

 Nα∑
l=0

∑
|β|=l

rαβy
β

 =
Nα∑
l=0

∑
|β|=l

rαβ (ϕ
∗
Wy)

β

with ϕ∗Wy = s. Hence ϕ∗W , if it exists, is uniquely determined on polynomials in η with
coefficients in polynomials in y and in view of polynomial approximation (see [14], page 51) ϕ∗W
is unique on all superfunctions in C∞r|s(W ) .

Switching to Zn2 -geometry, we assume again that the required algebra morphism

ϕ∗W : C∞r|s(W )→ OM(U) ,

where U = ϕ−1(W ) , exists for all W ∈ Open(V ) and show that it is uniquely determined on
an arbitrary Zn2 -function

∑
α fα(y)η

α ∈ C∞r|s(W ) . In this case the fact that ϕ∗W is an algebra
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morphism cannot be used to bring it inside the sum since we are dealing with series. Therefore,
we adopt the following notation for the time being:

ϕ∗W

(∑
α

fα(y)η
α

)
= ϕ∗W

 ∞∑
k=0

∑
|α|=k

fα(y)η
α

 =: a .

However, for any n ∈ N we can apply ϕ∗W to the above Zn2 -function truncated at its (n+ 1)-th
term to obtain

ϕ∗W

 n∑
k=0

∑
|α|=k

fα(y)η
α

 =
n∑
k=0

ϕ∗W

∑
|α|=k

fα(y)η
α

 =
n∑
k=0

∑
|α|=k

ϕ∗W (fα(y))(ϕ
∗
Wη)

α , (2.3.2)

where the right-hand side is a section in OM(U) and will be denoted by an. The sequence
(an)n∈N ⊆ OM(U) is Cauchy, which can be seen by considering for r > s the difference

ar − as =
r∑

k=0

∑
|α|=k

ϕ∗W (fα(y))(ϕ
∗
Wη)

α −
s∑

k=0

∑
|α|=k

ϕ∗W (fα(y))(ϕ
∗
Wη)

α

=
r∑

k=s+1

∑
|α|=k

ϕ∗W (fα(y))(ϕ
∗
Wη)

α .

Looking back on Equation (2.3.2) we note that
∑
|α|=k fα(y)η

α ∈ J k(W ) , which implies due
to continuity of ϕ∗W that

ϕ∗W

∑
|α|=k

fα(y)η
α

 =
∑
|α|=k

ϕ∗W (fα(y))(ϕ
∗
Wη)

α ∈ J k(U) .

Since J k(U) ⊆ J s+1(U) for all k ∈ {s + 1, ..., r} we have ar − as ∈ J s+1(U) , which can be
reformulated by saying that ar−as ∈ J N(U) whenever r > s ≥ N − 1 . As OM(U) is complete
the Cauchy sequence (an) has a unique limit in OM(U) , which we denote by

lim
n
an =:

∞∑
k=0

∑
|α|=k

ϕ∗W (fα(y))(ϕ
∗
Wη)

α .

But arguing similarly as above we have

a− an = ϕ∗W

 ∞∑
k=0

∑
|α|=k

fα(y)η
α

− n∑
k=0

∑
|α|=k

ϕ∗W (fα(y))(ϕ
∗
Wη)

α

= ϕ∗W

 ∞∑
k=n+1

∑
|α|=k

fα(y)η
α

 ∈ J n+1(U) ,

so that a− an ∈ J N(U) whenever n ≥ N − 1 and by uniqueness of the limit we obtain

a = ϕ∗W

 ∞∑
k=0

∑
|α|=k

fα(y)η
α

 =
∞∑
k=0

∑
|α|=k

ϕ∗W (fα(y))(ϕ
∗
Wη)

α .

Arguing similarly as in the Z2-case and applying the Zn2 -version of polynomial approximation
(see [16], page 14) we can thus state that ϕ∗W is uniquely determined on all Zn2 -functions in
C∞r|s(W ) . The remaining part of the theorem can be proved as in the Z2-case (see [16], page

14).



Chapter 3

Integration theory

3.1 Linear Z2-algebra

3.1.1 Z2-modules and linear maps

Let A be a Z2-algebra over R , i.e. a Z2-vector space over R equipped with a Z2-commutative
associative unital R-bilinear multiplication · that is compatible with the Z2-grading in the sense
that Ai · Aj ⊆ Ai+j . Let M be a Z2-module over A , i.e. a Z2-abelian group together with an
A-action ◁ that is compatible with the Z2-grading in the sense that Ai ◁ Mj ⊆Mi+j .

Remark 3.1.1. Recall that a left action ◁ verifies for all α, β ∈ A and all m, m′ ∈M ,

i. α ◁ (β ◁ m) = (α · β) ◁ m ,

ii. 1A ◁ m = m,

iii. (α + β) ◁ m = α ◁ m+ β ◁ m ,

iv. α ◁ (m+m′) = α ◁ m+ α ◁ m′

and that due to supercommutivity there is a one-to-one correspondence between left and right
actions, for instance each left action ◁ induces a right action ▷ by setting

m ▷ α := (−1)α̃m̃α ◁ m

for all α ∈ A and all m ∈M .

Definition 3.1.2. The set of linear maps between two Z2-modules M and N over A is defined
as

HomA(M, N) := HomA,0(M, N)⊕ HomA,1(M, N) ,

where a linear map λ ∈ HomA,λ̃(M, N) of degree λ̃ ∈ {0, 1} is an additive map λ :Mi → Ni+λ̃

that satisfies
λ(α ◁ m) = (−1)λ̃α̃α ◁ λ(m)

or, equivalently, in terms of the corresponding right action

λ(m ▷ α) = λ(m) ▷ α .

Then HomA(M, N) is a Z2-abelian group as direct sum of abelian groups. The action α ◁ λ
of α ∈ A on λ ∈ HomA(M,N) defined by

(α ◁ λ)(m) := α ◁ λ(m)

for all m ∈ M, is a new linear map α ◁ λ ∈ HomA(M,N) in view of the Z2-commutativity of
the multiplication · in A . Hence the group HomA(M, N) of linear maps between Z2-modules
over A is itself a Z2-module over A .

29
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Remark 3.1.3. In the following the symbols · , ◁ and ▷ will be omitted.

In standard non-graded linear algebra an element m in a free module M over some commu-
tative algebra A of rank p can be identified with a vector

m ∼=

m
1

...
mp

 ∈ Ap .
A linear map l ∈ HomA(M, N) between free modules of rank p and r can then be identified with
a matrix L ∈ gl(r × p, A) , where gl(r × p, A) denotes the space of r × p matrices with entries
in A , so that multiplying L with the representative vector of m we obtain the representative
vector of l(m) .

We have similar vector and matrix representations in linear Z2-algebra. Let M be a free
Z2-module of rank p|q over a Z2-commutative associative unital R-algebra A . If M has the
basis (e1, ..., ep, ep+1, ..., ep+q) , where the first p elements are even and the remaining elements
are odd, then every m ∈M reads uniquely as

m =

p∑
i=1

eim
i +

q∑
a=1

ep+am
p+a =

∑
A

eAm
A

for some m1, ...,mp+q ∈ A . Therefore, m can be represented by the vector

m ∼=



m1

...

mp

mp+1

...

mp+q


∈ Ap|q ,

where
m1, ...,mp ∈ A0 and mp+1, ...,mp+q ∈ A1

when m is even, whereas

m1, ...,mp ∈ A1 and mp+1, ...,mp+q ∈ A0

when m is odd. As indicated above the space containing such vectors is denoted by Ap|q .
Moreover, a linear map λ ∈ HomA(M, N) between free Z2-modules of rank p|q and r|s has

a representative Z2-matrix

Λ =

 A B

C D

 ∈ Z2 gl(r|s× p|q, A)

with

A ∈ gl(r × p, A0) , B ∈ gl(r × q, A1) , C ∈ gl(s× p, A1) and D ∈ gl(s× q, A0)

when λ is even and with

A ∈ gl(r × p, A1) , B ∈ gl(r × q, A0) , C ∈ gl(s× p, A0) and D ∈ gl(s× q, A1)
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when λ is odd. Depending on the parity of λ we refer to Λ as an even respectively as an odd
Z2-matrix. As indicated above the space of Z2-matrices of size r|s × p|q with entries in A is
denoted by Z2 gl(r|s× p|q, A) . Furthermore, the representation of linear maps by Z2-matrices
preserves addition, multiplication by scalars and composition:

λ+ λ′ ∼= Λ+ Λ′ ,

αλ ∼= αΛ ,

λ′′ ◦ λ ∼= Λ′′Λ ,

where Λ, Λ′ ∈ Z2 gl(r|s × p|q, A) are the representative Z2-matrices of λ, λ′ ∈ HomA(M, N) ,
α ∈ A and Λ′′ ∈ Z2 gl(u|v×r|s, A) is the Z2-matrix of λ′′ ∈ HomA(N, P ) . The sum and product
of two supermatrices are defined as for standard matrices but the definition of αΛ deviates from
the standard definition. More precisely, to ensure that the representation of linear maps by
matrices preserves multiplication by scalars in the context of supercommutativity, we have to
set

α

 A B

C D

 :=

 αA αB

(−1)α̃αC (−1)α̃αD

 . (3.1.1)

Analogously, the adjoint operator λ∗ ∈ HomA(N
∗, M∗) of some linear map λ ∈ HomA(M, N)

is a linear map between the dual of N and the dual of M . Taking into account the Z2-grading
we define it by setting

λ∗(n∗)(m) := (−1)λ̃ñ∗
n∗(λ(m)) ∈ A

for any n∗ ∈ N∗ = HomA(N, A) and any m ∈M . If

Λ =

 A B

C D


is the representative Z2-matrix of λ then the representative Z2-matrix of λ∗ is given by

Z2tΛ :=



(
tA tC

− tB tD

)
if λ is even,

(
tA − tC
tB tD

)
if λ is odd.

We refer to Z2tΛ as the supertranspose of Λ . Similarly, the Z2-trace of Λ must be defined as

Z2 tr (Λ) := trA− (−1)Λ̃trD .

3.1.2 Z2-Berezinian

One of the main properties of the classical determinant for standard matrices is multiplicativity,
i.e. if A and B are matrices over a commutative ring then

det(A ·B) = detA · detB .

However, if

A =

(
a b
c d

)
and B =

(
α β
γ δ

)
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are 2× 2 matrices with entries in a non-commutative ring then

det

((
a b
c d

)(
α β
γ δ

))
= det

(
aα + bγ aβ + bδ
cα + dγ cβ + dδ

)
= aαcβ + aαdδ + bγcβ + bγdδ − aβcα− aβdγ − bδcα− bδdγ

and

det

(
a b
c d

)
det

(
α β
γ δ

)
= (ad− bc)(αδ − βγ)

= adαδ − adβγ − bcαδ + bcβγ ,

which shows that the classical determinant is not multiplicative in a non-commutative context.
Since in linear Z2-algebra we are working with matrices over a Z2-commutative algebra – so a
(slightly) non-commutative algebra – the above example highlights the necessity of introducing
a new map that replaces the determinant in the case of matrices over Z2-commutative algebras.
This new determinant, which shares some important properties with the standard determinant
and will play a fundamental role in Z2-integration theory, will be called Z2-Berezinian.

According to I. Gelfand and V. Retakh every good notion of a determinant is made of
quasideterminants (see for example [23], page 58). Therefore, we briefly introduce quasideter-
minants. Let A and D be square matrices of size p and q respectively and assume D to be
invertible. Then the block matrix

Λ =

 A B

C D


can be decomposed into

Λ =

 A B

C D

 =

 1 BD−1

0 1

 A−BD−1C 0

0 D

 1 0

D−1C 1

 (3.1.2)

and this decompostion is referred to as UDL decomposition since on the right-hand side we
have an upper unitriangular, a diagonal and a lower unitriangular block matrix. If Λ has entries
in a commutative ring then it makes sense to apply the standard determinant and we obtain

det Λ = det(A−BD−1C) · detD .

Building on this observation we make the following definition.

Definition 3.1.4. Let

Λ =

 A B

C D


be a square block matrix with entries in a unital not necessarily commutative ring R . The
quasideterminant of Λ with respect to the block entry 11 , i.e. with respect to the block A , is
given by ∣∣∣∣∣∣ A B

C D

∣∣∣∣∣∣
11

:= A−BD−1C ,

provided D is invertible over R .
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Example 3.1.5. Dividing the matrix x a b
c y d
e f z


over R into blocks in two different ways and calculating the quasideterminant with respect to
the respective upper left-hand block entry yields∣∣∣∣∣∣

x a b
c y d
e f z

∣∣∣∣∣∣
11

=

(
x a
c y

)
−
(
b
d

)
z−1

(
e f

)
and ∣∣∣∣∣∣

x a b
c y d
e f z

∣∣∣∣∣∣
11

= x−
(
a b

)(y d
f z

)−1(
c
e

)
,

where the inverse of the 2× 2 matrix in the second line can be shown to equal(
(y − dz−1f)−1 −(y − dz−1f)−1dz−1

−z−1f(y − dz−1f)−1 z−1 + z−1f(y − dz−1f)−1dz−1
)
, (3.1.3)

if all the inverses exist.

Remark 3.1.6. As can be seen in Example 3.1.5 quasideterminant consist of rational functions,
not necessarily polynomials. It follows that, as already mentioned above, certain inverses must
exist in order to allow for a certain quasideterminant to be defined.

Collecting some important properties of the classical determinant, which we would also
like the Z2-Berezinian to verify, we obtain for all matrices X, Y ∈ gl(n, R) , A ∈ gl(p, R) ,
B ∈ gl(p× q, R) , C ∈ gl(q × p, R) and D ∈ gl(q, R) :

i. det(X · Y ) = detX · detY ,

ii. det

(
A 0
0 D

)
= detA · detD ,

iii. det

(
1 B
0 1

)
= 1 = det

(
1 0
C 1

)
,

iv. det eX = etrX .

For a matrix X in the Lie algebra gl(n, R) over R we have that

eX =
∞∑
k=0

Xk

k!

is an element of the Lie group

GL(n, R) = {X ∈ gl(n, R) | detX ̸= 0} ,

so that Property iv can be summarized by saying that the determinant is the group analogue
of the trace.
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Concerning the usefulness of determinants in integration theory, we recall that if y = y(x)
is a standard coordinate transformation between open subsets U and V of Rp and ∂xy is
the corresponding Jacobian matrix, a function f(y) is integrable over V (with respect to the
Lebesgue measure) if and only if the function f(y(x))| det ∂xy| is integrable over U and in this
case ˆ

V

dy f(y) =

ˆ
U

dx f(y(x)) | det ∂xy| .

Now that we have specified our conclusions from the first paragraph of this subsection, let
us recall that we are currently working towards the definition of a Z2-Berezinian determinant
that has properties similar to Properties i - iv and is defined for certain matrices Λ ∈ gl(p|q, A)
with entries in a Z2-algebra A over R . Since a Z2-coordinate transformation

y = y(x, ξ) η = η(x, ξ)

in a superdomain Up|q = (U, C∞p|q) preserves the parities and is invertible, its Jacobian matrix is
the even invertible matrix  ∂xy ∂ξy

∂xη ∂ξη

 ∈ Z2GL0(p|q, C∞p|q(U)) .

This suggests that for our application in integration theory it is sufficient to define the Z2-
Berezinian on the group Z2GL0(p|q, A) of even invertible Z2-matrices of size p|q × p|q with
entries in a super R-algebra A. It should be valued in the group A×0 of even invertible elements
of A and hence we are looking for a group morphism

Z2 Ber : Z2GL0(p|q, A)→ A×0

that also verifies properties similar to ii - iv.

First note that similarly to the result proved in Proposition 1.2.7, which states that a Z2-
function is invertible if and only if its parameter-free even part is invertible, it can be shown
that an even matrix

Λ =

 A B

C D

 ∈ Z2 gl0(p|q, A)

is invertible if and only if A ∈ gl(p, A0) and D ∈ gl(q, A0) are invertible. We refer to [20],
page 24, where a more general result is proved. Considering that we want to define the Z2-
Berezinian on the group Z2GL0(p|q, A) of even invertible matrices we can therefore always
assume that the blocks A and D are invertible. Since the classical determinant works well for
blocks consisting exclusively of even elements this is equivalent to assuming that

detA, detD ∈ A×0 . (3.1.4)

Moreover, we observe that if Property iv, adapted to the Z2-graded context, holds for Z2 Ber
and Z2 tr then we have

Z2 Ber

 eA 0

0 eD

 = Z2 Ber e

 A 0
0 D


= e

Z2 tr

 A 0
0 D



= etrA−trD = etrA · (etrD)−1 = det eA · det−1eD , (3.1.5)

where the second equality follows from the Z2-version of Property iv and the last equality
follows from the original version of this property.
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Hence if we assume that the Z2-analogues of the properties i, iii and iv hold, then the UDL
decomposition (3.1.2), the fact (3.1.4) that A and D are invertible and the Z2-analogue (3.1.5)
of Property ii imply that the Z2-Berezinian of a matrix

Λ =

 A B

C D

 ∈ Z2GL0(p|q, A)

must necessarily be given by

Z2 Ber

 A B

C D

 = 1 · Z2 Ber

 A−BD−1C 0

0 D

 · 1
= det(A−BD−1C) det−1D .

So defined the Z2-Berezinian of Λ is invertible since

Z2 BerΛ · Z2 BerΛ
−1 = Z2 Ber (Λ · Λ−1) = Z2 Ber1 = 1 ,

so that Z2 BerΛ
−1 is the inverse of Z2 BerΛ .

Theorem 3.1.7. For every Z2-commutative associative unital R-algebra A there exists a unique
group morphism

Z2 Ber : Z2 GL0(p|q, A)→ A×0
such that

(i) Z2 Ber

(
A 0
0 D

)
= detA · det−1D and

(ii) Z2 Ber

(
1 B
0 1

)
= 1 = Z2 Ber

(
1 0
C 1

)
.

It is given by

Z2 Ber

(
A B
C D

)
= det(A−BD−1C) det−1D . (3.1.6)

Proof. It can easily be verified that the Z2-Berezinian when defined as in (3.1.6) has the prop-
erties (i) and (ii). The proof of multiplicativity is more involved and will not be given here
(see [20], page 24 for the proof of a more general result). The above approach shows that a
map that has all the required properties must necessarily be given by (3.1.6) and thus solves
the problem of uniqueness.

3.2 Linear Zn2-algebra

3.2.1 Zn
2-modules and linear maps

We consider 1 ≤ n ∈ N and as explained in Section 2.2 we assume the Zn2 -degrees γ0, ..., γ2n−1
to be given in standard order. Let A be a real Zn2 -algebra and define linear maps

λ ∈ HomA,λ̃(M, N)

of degree λ̃ ∈ {γ0, ..., γ2n−1} between Zn2 -modules over A analogously to the Z2-case. Then set

HomA(M, N) :=
2n−1⊕
i=0

HomA,γi(M, N) =
2n⊕
i=1

HomA,Γi
(M, N) ,



36

where we introduce the alternative notation Γi = γi−1 for the Zn2 -degrees in order to simplify
some of the results below.

If M and N are free Zn2 -modules over A of rank p|q and r|s respectively, where q =
(q1, ..., q2n−1) and s = (s1, ..., s2n−1) , then their elements can be represented by column vec-
tors and linear maps between them by matrices. For instance, for any m ∈M of degree γ0 we
have the identification

m ∼=



m1

...

mp

mp+1

...

mp+q1

...

mp+···+q2n−2+1

...

mp+···+q2n−1



∈ Ap|q

for some m1, ...,mp ∈ Aγ0 , mp+1, ...,mp+q1 ∈ Aγ1 and mp+···+qi−1+1, ...,mp+···+qi ∈ Aγi for
i ∈ {2, ..., 2n − 1} .

Now fix n = 2 and consider a linear map λ ∈ HomA,Γ1(M, N) . Taking into account that λ
must in particular preserve the parity of degree (0, 0) elements

m ∼=


(0, 0)

(1, 1)

(0, 1)

(1, 0)

 ∈ A
p|q
γ0

we obtain the identification

λ ∼= Λ =


(0, 0) (1, 1) (0, 1) (1, 0)

(1, 1) (0, 0) (1, 0) (0, 1)

(0, 1) (1, 0) (0, 0) (1, 1)

(1, 0) (0, 1) (1, 1) (0, 0)

 ∈ Z2
2 glΓ1

(r|s× p|q, A) , (3.2.1)

where each block contains elements of A that have the Z2
2-degree specified in the corresponding

part of the vector or matrix. For instance, setting q = (q1, q2, q3) and s = (s1, s2, s3) , the
elements in the r × q3 block in the top right-hand corner of Λ are of degree (1, 0) . Note that
dividing Λ into four blocks by means of the double lines in (3.2.1) the blocks in the top left-hand
and the bottom right-hand corner only contain elements of even degree whereas the two other
blocks consist of odd elements.

Proceeding similarly for n = 3 we obtain that a linear map λ ∈ HomA,Γ1(M, N) can be
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identified with a matrix Λ ∈ Z3
2 glΓ1

(r|s× p|q, A) , where

Λ =



(0, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0) (0, 0, 1) (0, 1, 0) (1, 0, 0) (1, 1, 1)

(0, 1, 1) (0, 0, 0) (1, 1, 0) (1, 0, 1) (0, 1, 0) (0, 0, 1) (1, 1, 1) (1, 0, 0)

(1, 0, 1) (1, 1, 0) (0, 0, 0) (0, 1, 1) (1, 0, 0) (1, 1, 1) (0, 0, 1) (0, 1, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1) (0, 0, 0) (1, 1, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1)

(0, 0, 1) (0, 1, 0) (1, 0, 0) (1, 1, 1) (0, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0)

(0, 1, 0) (0, 0, 1) (1, 1, 1) (1, 0, 0) (0, 1, 1) (0, 0, 0) (1, 1, 0) (1, 0, 1)

(1, 0, 0) (1, 1, 1) (0, 0, 1) (0, 1, 0) (1, 0, 1) (1, 1, 0) (0, 0, 0) (0, 1, 1)

(1, 1, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (0, 0, 0)


and we can observe again that the double lines divide Λ into two even and two odd blocks.

Remark 3.2.1. These observations can be generalized, i.e. if Λ ∈ Zn2 glΓi
(r|s × p|q, A) then

its block Λkl exclusively contains elements of Zn2 -degree Γk + Γl + Γi .

As in the Z2-case the identification

HomA(Ap|q, Ar|s) ∼= Zn2 gl(r|s× p|q, A)

between linear maps and matrices preserves the Zn2 -degree, addition, multiplication and external
multiplication by scalars α ∈ A provided we set

αΛ :=


(−1)⟨α̃,Γ1⟩αΛ11 · · · · · · (−1)⟨α̃,Γ1⟩αΛ12n

...
...

...
...

(−1)⟨α̃,Γ2n ⟩αΛ2n1 · · · · · · (−1)⟨α̃,Γ2n ⟩αΛ2n2n


for any Λ ∈ Zn2 gl(r|s × p|q, A) . Note that this definition is consistent with the Z2-case as it
reduces to (3.1.1) if n = 1 .

Furthermore, the Z2-trace can be generalized to the Zn2 -context as stated in the following
theorem.

Theorem 3.2.2. There exists an A-linear graded Lie algebra morphism of degree γ0

Zn2 tr : Zn2 gl(p|q, A)→ A .

It is unique up to multiplication by α ∈ A0 and it is given for Λ of degree Γi by

Zn2 tr


Λ11 · · · · · · Λ12n

...
...

...
...

Λ2n1 · · · · · · Λ2n2n

 =
2n∑
k=1

(−1)⟨Γk+Γi,Γk⟩ tr Λkk ,

where tr denotes the usual trace.

Note that the usual trace is a Lie algebra morphism as it satisfies, for any two matrices A
and B with entries in a field, tr(B · A) = tr(A ·B) , which implies

tr[A, B]c = 0 = [trA, trB]c ,

where [−,−]c denotes the commutator bracket. Moreover, it can easily be verified that the
Z2-trace coincides with the Zn2 -trace for n = 1 . For a proof of Theorem 3.2.2 see [20], page 9.
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3.2.2 Zn
2-Berezinian

With the objective of generalizing the Z2-Berezinian to a Zn2 -Berezinian we formulate the

Theorem 3.2.3. For every Zn2 -commutative associative unital R-algebra A there exists a unique
group morphism

Zn2 Ber : Zn2 GLγ0(p|q, A)→ A×γ0
such that

(i) Zn2 Ber
(
A 0

0 D

)
= Zn2 detA · Zn2 det−1D and

(ii) Zn2 Ber
(
1 B

0 1

)
= 1 = Zn2 Ber

(
1 0

C 1

)
.

It is given by

Zn2 Ber
(
A B

C D

)
= Zn2 det(A−BD−1C) · Zn2det−1D .

As indicated by the use of double lines and by Remark 3.2.1, the blocks A and D in the
above theorem are made of even elements, i.e.

A, D ∈ (Zn2 )ev glγ0(p|q ev, A) .

However, it does not make sense to apply the classical determinant to them as their entries
do not necessarily commute. So before we can prove or even formulate the above theorem, we
have to look for a suitable replacement for the classical determinant. We keep the axioms of
the previous theorem motivated in Section 3.1.2.

Theorem 3.2.4. There exists a unique map

Zn2 det : (Zn2 ) ev glγ0(p|q ev
, A)→ Aγ0

such that

(i) Zn2 det is multiplicative,

(ii) Zn2 det


Λ11 0 · · · 0
0 Λ22 · · · 0
...

...
. . .

...
0 0 · · · Λ2n−12n−1

 =
2n−1∏
k=1

detΛkk ∈ Aγ0 and

(iii) applying Zn2 det to an upper unitriangular or lower unitriangular matrix yields 1.

Note that all blocks Λkk are of Zn2 -degree γ0 and therefore have commutative entries, so
their classical determinant makes sense.

Proof. The proof makes use of the fact that every matrix Λ ∈ (Zn2 )ev glγ0(p|q ev, A) has a UDL
decomposition, which can be shown to equal

Λ = UDL = U



|Λ|11 0 0 · · · 0

0 |Λ1:1|22 0 · · · 0

0 0 |Λ12:12|33 · · · 0
...

...
...

. . . 0

0 0 0 0 Λ2n−12n−1


L ,
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for some upper respectively lower unitriangular matrices U and L and where |Λ1:1|22 denotes
the quasi-determinant with respect to the block entry Λ22 of the matrix obtained from Λ by
omitting block row 1 and block column 1 . Based on this decomposition we can then argue that
if the Zn2 -graded determinant exists it must be given by

Zn2 detΛ = det |Λ|11 · det |Λ1:1|22 · ... · detΛ2n−12n−1 ∈ Aγ0 . (3.2.2)

In view of the fact that quasi-determinants are made of rational functions a crucial and chal-
lenging part of the proof is to show that Zn2 detΛ is a polynomial after simplification and that
Zn2 det is multiplicative.

For a complete proof of Theorem 3.2.4 we refer to [20], page 10. We limit ourselves here to
a couple of examples that illustrate what has just been said.

Example 3.2.5. Let

Λ =


x a b c

d y e f

g h z l

m n p w

 ∈ (Z3
2)ev gl(0,0,0)(1|(1, 1, 1), A)

be a matrix over a real Z3
2-algebra A . According to (3.2.2) and taking into account that each

block of Λ consists of a single element the graded determinant of Λ is given by

Z3
2 detΛ = |Λ|11 · |Λ1:1|22 · |Λ12:12|33 · Λ44 .

Clearly, we have
Λ44 = w

and applying Definition 3.1.4 we get

|Λ12:12|33 = z − lw−1p .

Hence it remains to calculate two quasi-determinants. Setting α := w−1 and β := (z− lw−1p)−1
we have

|Λ1:1|22 =

∣∣∣∣∣∣
y e f
h z l
n p w

∣∣∣∣∣∣
11

= y −
(
e f

)( z l
p w

)−1(
h
n

)

= y −
(
e f

)( (z − lw−1p)−1 −(z − lw−1p)−1lw−1
−w−1p(z − lw−1p)−1 w−1 + w−1p(z − lw−1p)−1lw−1

)(
h
n

)
= y − eβh+ eβlαn+ fαpβh− fαn− fαpβlw−1n

= αβ[y(zw − lp) + fph+ eln− ehw − fnz] ,

where formula (3.1.3) is used to compute the inverse matrix and the Z3
2-commutation rule is

applied in order to simplify the resulting expression. Observing that Λ44 = α−1 and |Λ12:12|33 =
β−1 we obtain that multiplying the three last factors of Z3

2 detΛ yields

v := y(zw − lp) + fph+ eln− ehw − fnz .
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Concerning the first factor of Z3
2 detΛ we compute

|Λ|11 =

∣∣∣∣∣∣∣∣
x a b c
d y e f
g h z l
m n p w

∣∣∣∣∣∣∣∣
11

= x−
(
a b c

) y e f
h z l
n p w

−1 d
g
m



= x−
(
a b c

) v−1(zw − lp) v−1(fp− ew) v−1(el − fz)
v−1(ln− hw) v−1(yw − fn) v−1(hf − ly)
v−1(ph− zn) v−1(ne− py) v−1(yz − eh)

 d
g
m


= v−1[xv − (a(zw − lp) + b(ln− hw) + c(ph− zn))d
− (a(fp− ew) + b(yw − fn) + c(ne− py))g
− (a(el − fz) + b(hf − ly) + c(yz − eh))m] ,

where the calculation of the inverse of the involved 3×3 matrix, that can among others be done
using its UDL decomposition, is omitted. Finally, multiplying by v and expanding we obtain

Z3
2 detΛ = xyzw − xylp − xehw − xfhp + xeln − xfzn

− adzw + adlp + aegw + afgp − aelm + afzm

− bdhw + bdln − bygw + bfgn + bylm + bfhm

− cdhp − cdzn − cygp + cegn − cyzm + cehm .

Example 3.2.6. Consider the matrix

Λ =


x a b c

d y e f

g h z l

m n p w

 ∈ (Z3
2)ev gl(0,0,0)(0|(2, 1, 1), A) ,

where A is a real Z3
2-algebra. Its graded determinant is given by

Z3
2 detΛ = det |Λ|11 · |Λ1:1|22 · Λ33

and we immediately obtain

Λ33 = w and |Λ1:1|22 = z − lw−1p .

Denoting once again w−1 by α and (z − lw−1p)−1 by β the remaining factor of Z3
2 detΛ can be
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computed as follows:

|Λ|11 =

∣∣∣∣∣∣∣∣
x a b c
d y e f
g h z l
m n p w

∣∣∣∣∣∣∣∣
11

=

(
x a
d y

)
−
(
b c
e f

)(
z l
p w

)−1(
g h
m n

)

=

(
x a
d y

)
−
(
b c
e f

)(
(z − lw−1p)−1 −(z − lw−1p)−1lw−1

−w−1p(z − lw−1p)−1 w−1 + w−1p(z − lw−1p)−1lw−1
)−1(

g h
m n

)

=

(
x− bβg + bβlαm+ cαpβg − cαm− cαpβlαm a− bβh+ bβlαn+ cαpβh− cαn− cαpβlαn
d− eβg + eβlαm+ fαpβg − fαm− fαpβlαm y − eβh+ eβlαn+ fαpβh− fαn− fαpβlαn

)
,

so that

det |Λ|11 =(x− bβg + bβlαm+ cαpβg − cαm− cαpβlαm)

·(y − eβh+ eβlαn+ fαpβh− fαn− fαpβlαn)
−(d− eβg + eβlαm+ fαpβg − fαm− fαpβlαm)

·(a− bβh+ bβlαn+ cαpβh− cαn− cαpβlαn) .

After multiplication with w = α−1 and z − lw−1p = β−1 the resulting expression can be
simplified taking into account the Z3

2-degrees of the involved components and we obtain

Z3
2 detΛ = xyzw − xylp − xehw − xfhp + xeln − xfzn

− adzw + adlp + aegw + afgp − aelm + afzm

+ bdhw − bdln − bygw − bfgn + bylm + bfhm

+ cdhp + cdzn − cygp − cegn − cyzm + cehm .

Remark 3.2.7. It should be noted that Zn2 Ber coincides with the Z2-Berezinian if n = 1 and
thus constitutes a generalization of the standard Berezinian. Furthermore Z3

2Ber coincides
– except for its sign – with the Dieudonné determinant if we set A = H (where H denotes
the algebra of quaternions) and it can be verified that Zn2 Ber is the group analogue of Zn2 tr.
All these properties confirm that the Zn2 -Berezinian is a suitable replacement for the classical
determinant in Zn2 -algebra. For a proof of Theorem 3.2.3 we refer to [20], page 24.

3.3 Integration on smooth manifolds

On our way towards integration on Zn2 -manifolds we first deal with integration on smooth
manifolds as integration on colored supermanifolds generalizes this theory.

Let N be a smooth manifold of dimension p and (U, φ = (x1, ..., xp)) a coordinate chart
from an atlas AN of N . Any differential (smooth) top-form ω ∈ Ωp(N) is locally given by

ω|U = f dx1 ∧ · · · ∧ dxp

for some f ∈ C∞(U) , whose support we assume to be compact and contained in U for the time
being. Due to this assumption we can setˆ

N

ω =

ˆ
U

ω|U =

ˆ
U

f dx1 ∧ · · · ∧ dxp :=
ˆ
φ(U)

f(x) dx1 · · · dxp , (3.3.1)
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where the right-hand side denotes the Lebesgue integral of f ◦ φ over φ(U) ⊆ Rp .

Requiring the integral of ω over N to be well-defined means that
´
N
ω defined as in (3.3.1)

should be independent of the choice of coordinates in U . In order to prove coordinate-
independence we need another assumption, namely that N is orientable. What it means for a
smooth manifold to be orientable becomes clear when considering the non-orientable Möbius
strip M .

Figure 3.1: non-orientable manifold

The blue arrows represent bases of the corresponding tangent spaces. Since the two leftmost
bases (∂x1 , ∂x2) and (∂y1 , ∂y2), where the first (resp. second) vectors are horizontal (resp.
vertical), are direct bases their transition matrix, which equals the Jacobian matrix of the
coordinate transformation from x- to y-coordinates, satisfies det ∂xy > 0 . However, as indicated
in the above figure we cannot equip the whole manifold with bases that verify this condition.
This means that there does not exist any atlas AM = (Uα, φα)α satifying

det(φβ ◦ φ−1α )′(x) > 0

for all x ∈ φα(Uα∩Uβ) and for all indices α and β , which is a defining criterion for orientability.
Moreover, it can be observed that on non-orientable manifolds such as M there does not exist
any nowhere vanishing top-form, which constitutes an equivalent criterion for orientability.
Indeed, the top-form represented by the green arrows is not smooth and the one indicated by the
red arrows vanishes. We conclude that orientable smooth manifolds admit nowhere vanishing
(smooth) top-forms and atlases whose Jacobian matrices have strictly positive determinants.

Hence we formulate our additional hypothesis as follows. We assume N to be orientable
and let Ω be a nowhere vanishing top-form on N , which we call volume form. Then we fix an
orientation, either Ω or −Ω , and choose a compatible atlas AN , i.e. an atlas that is compatible
with the chosen orientation and where the determinant of each Jacobian matrix is strictly
positive. For example, the Cartesian space Rp is orientable with Ω = dx1 ∧ · · · ∧ dxp as volume
form.

Picking two coordinate charts (U, φ = (x1, ..., xp)) and (U, ψ = (y1, ..., yp)) , where for
simplicity we assume the coordinate domains to coincide, the integral

´
N
ω can be expressed as

ˆ
N

ω =

ˆ
U

ω|U =


´
U
f dx1 ∧ · · · ∧ dxp =

´
φ(U)

f(x) dx1 · · · dxp

´
U
g dy1 ∧ · · · ∧ dyp =

´
ψ(U)

g(y) dy1 · · · dyp
. (3.3.2)

We need to show that the Lebesgue integrals on the right-hand side of (3.3.2) coincide. First, we
observe that the coordinate transformation between x- and y-coordinates allows us to express
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ω locally as

g(y) dy1 ∧ · · · ∧ dyp = ω|ψ(U)

= f(x(y)) dx1 ∧ · · · ∧ dxp (3.3.3)

= f(x(y))
∑

(σ1···σp)=σ∈Sp

∂yσ1x
1 · · · ∂yσpxp dyσ1 ∧ · · · ∧ dyσp

= f(x(y))
∑

(σ1···σp)=σ∈Sp

∂yσ1x
1 · · · ∂yσpxp signσ dy1 ∧ · · · ∧ dyp

= f(x(y)) det ∂yx dy
1 ∧ · · · ∧ dyp , (3.3.4)

so that

g(y) = f(x(y)) det ∂yx .

Then
ˆ
N

ω =

ˆ
ψ(U)

g(y) dy1 · · · dyp

=

ˆ
ψ(U)

f(x(y)) det ∂yx dy
1 · · · dyp

=

ˆ
ψ(U)

f(x(y)) | det ∂yx| dy1 · · · dyp

=

ˆ
φ(U)

f(x) dx1 · · · dxp ,

where the third equality follows from the orientability assumption and the fourth equality from
the coordinate transformation theorem for Lebesgue integrals. This concludes our proof of
coordinate-independence for integrals over smooth manifolds.

Next, we would like to define the integral over a p-dimensional smooth manifold N of an
arbitrary top-form ω ∈ Ωp(N) . This means that we drop the assumption about the support
of ω , while the assumption that N is orientable and oriented remains valid. Using a partition
of unity (ζα)α subordinate to a locally finite compatible atlas AN = (Uα, φα)α , we define the
integral of ω over N by setting

ˆ
N

ω =

ˆ
N

(∑
α

ζα

)
ω :=

∑
α

ˆ
N

ζα ω

provided the series on the right-hand side converges in R . Note that ζα ω is a top-form whose
support is compact and contained in Uα , so that each of the integrals in the series is defined
by (3.3.1). It can be verified that

´
N
ω does not depend on the choice of the partition of unity.

3.4 Integration on Zn2-manifolds

3.4.1 Zn
2-Berezinian-sheaf of a Zn

2-manifold

Once again let N be a smooth manifold of dimension p and let (U, φ = (x1, ..., xp)) be a
coordinate chart of N . We denote by M := Ω1(U) the C∞(U)-module of differential 1-forms
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over U . Denoting furthermore the real commutative algebra C∞(U) by A we obtain that M is
a free module of rank p over A . Considering the exterior algebra ∧M of M we set

DetM := ∧pM = ∧pΓ(T ∗U) = Γ(∧pT ∗U) = Ωp(U) = C∞(U)Ω ,

where Ω is the volume form dx1∧· · ·∧dxp . Of course DetM is a module of rank 1 over A . Now
we make an important observation concerning the relation between M and DetM . Namely, a
basis transformation in M , given by

dyj =
∑
i

∂xiy
jdxi

and characterized by
B = t∂xy ∈ GL(p, C∞(U))

induces a basis transformation in DetM , characterized by detB . Indeed, looking at (3.3.3)
and (3.3.4) above and exchanging the roles of x and y we find

dy1 ∧ · · · ∧ dyp = det ∂xy dx
1 ∧ · · · ∧ dxp

with
det ∂xy = det t∂xy = detB .

Our goal is to generalize DetM = Ωp(U) to the Zn2 -context, which cannot be done in a
straightforward way since there are no Zn2 -top-forms. As seen in the previous section DetM
is the module of objects that can be integrated over smooth manifolds and by generalizing
DetM to the Zn2 -setting we intend to find the module of objects that can be integrated over
Zn2 -manifolds.

We start with a real Zn2 -algebra A and a free Zn2 -module M of total rank r over A . The
problem we are trying to solve can then be described as finding a free Zn2 -module Zn2 BerM of
total rank 1 over A such that a basis transformation in M characterized by B ∈ Zn2 GLγ0(r, A)
induces a basis transformation in Zn2 BerM characterized by Zn2 BerB.

Before solving this problem using tools from cohomology theory we briefly recall tensor
products of vector spaces and modules.

Remark 3.4.1. The tensor product V ⊗W of two real vector spaces is itself a vector space
over R . If M and N are modules over a commutative ring R their tensor product M ⊗R N is
also an R-module. Considering the same situation with R being an arbitrary not necessarily
commutative ring we obtain that M ⊗R N is an abelian group or, equivalently, a module over
Z . Now let M and N be Zn2 -modules over a real Zn2 -algebra A . The tensor product M ⊗AN is
a Zn2 -module over A as well and taking two copies of M we can define the Zn2 -symmetric tensor
product M ⊙AM , which is another Zn2 -module over A and we have

m⊙ n = (−1)⟨m̃,ñ⟩n⊙m .

Taking the free Zn2 -module M considered above, we shift the degree of each of its elements
by a fixed odd Zn2 -degree γ and obtain a new free Zn2 -module of total rank r over A , which we
denote by M [γ] . This shift makes sure that the square of the cohomology operater introduced
below vanishes. Taking into account Remark 3.4.1 we obtain that

K := ⊙AM [γ] ⊗ ⊙AM∗ (3.4.1)
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is a Zn2 -module over A as tensor product of two such Zn2 -modules. Furthermore K can be
equipped with a multiplication ⊙ detailed below and can thus also be seen as a Zn2 -algebra over
A . Choosing a basis (ei)i of M and denoting the corresponding dual basis of M∗ by (εi)i we
define an element

δ :=
r∑
i=1

ei[γ] ⊗ εi ∈ K . (3.4.2)

Combining the fact that
εi(ei) = 1A

with the observation that the identity element 1A in A is of degree γ0 it becomes clear that ei
and εi must have the same degree for every i ∈ {1, ..., r} . Therefore, the degree of ei[γ] is odd
if the degree of εi is even and vice versa, which implies that in each term of δ there is exactly
one odd factor.

Let ∑
fin

m[γ]⊙ n[γ]⊗ α∗ ∈ K

be the finite sum of some tensor products of elements in m[γ], n[γ] ∈ M [γ] and α∗ ∈ M∗ . We
define the value of δ on ∑

fin

m[γ]⊙ n[γ]⊗ α∗

by setting

δ

(∑
fin

m[γ]⊙ n[γ]⊗ α∗
)

:=

(∑
i

ei[γ]⊗ εi
)
⊙

(∑
fin

m[γ]⊙ n[γ]⊗ α∗
)

:=
∑
i

∑
fin

(−1)⟨ẽi,m̃+γ+ñ+γ⟩(ei[γ]⊙m[γ]⊙ n[γ])⊗ (εi ⊙ α∗) ,

where the term 2γ in the exponent can be omitted as 2γ = γ0 . If we define the cohomological
degree of an element in K to equal the number of odd factors each of its terms contains, then
the cohomological degree of δ is 1 . If an element κ ∈ K has cohomological degree l then the
above definition implies that δ(κ) is of degree l + 1 . Hence δ can be seen as an A-linear map

δ : Kl → Kl+1 such that δ2 = 0 .

Indeed, we have

δ2 =
∑
i,j

(−1)⟨ẽi,ẽj+γ⟩ei[γ]⊙ ej[γ] ⊗ εi ⊙ εj

=
∑
i,j

(−1)⟨ẽi,ẽj+γ⟩(−1)⟨ẽi+γ,ẽj+γ⟩ej[γ]⊙ ei[γ] ⊗ (−1)⟨ẽi,ẽj⟩εj ⊙ εi

=
∑
i,j

(−1)⟨ẽi,ẽj+γ⟩+⟨ẽi+γ,ẽj+γ⟩+⟨ẽi,ẽj⟩ej[γ]⊙ ei[γ] ⊗ εj ⊙ εi

=
∑
i,j

(−1)⟨γ,γ⟩(−1)⟨ẽi+γ,ẽj⟩ej[γ]⊙ ei[γ] ⊗ εj ⊙ εi

= −
∑
i,j

(−1)⟨ẽi,ẽj+γ⟩ei[γ]⊙ ej[γ] ⊗ εi ⊙ εj ,

where the roles of i and j have been interchanged in the last step to show that δ2 is equal to
its opposite and thus vanishes.
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Moreover, it can be shown that the operator d is independent of the choice of the basis (ei)i
of M .

Therefore (K·, δ) is a cochain complex of Zn2 -modules over A . Consequently, its cohomology
H·(K·, δ) is a graded Zn2 -module over A , where graded refers to the cohomology degree. This
cohomology can be computed and we state without proof the

Theorem 3.4.2. [15] Let M be a free Zn2 -module of total rank r over a real Zn2 -algebra A and
let (K·, δ) be the cochain complex defined by (3.4.1) and (3.4.2). For every k ̸= r the degree k
cohomology Zn2 -module of (K·, δ) is given by

Hk(K·, δ) = 0

and for k = r we have
Hr(K·, δ) = [Ω]A ,

which is a free Zn2 -module over A of rank 1 and where Ω ∈ kerr δ ⊆ Kr is the product of all odd
vectors among the ei[γ] and the εi associated to a basis (ei)i of M .

Note that Zn2 BerM , the free Zn2 -module over A of rank 1 that we are looking for, should
be given by H·(K·, δ) = Hr(K·, δ) = [Ω]A . It remains to check whether a basis transformation
inM characterized by a Zn2 -matrix B induces a basis transformation in Hr(K·, δ) characterized
by Zn2 BerB .

To this end, we make another small digression on tensor products.

Remark 3.4.3. Let V and W be finite dimensional real vector spaces. If l : V → W is an
isomorphism then l−1 : W → V and (l−1)∗ : V ∗ → W ∗ are isomorphisms as well. Furthermore,
we can define an isomorphism l⊙ : ⊙V → ⊙W by setting

l⊙(v1, ..., vp) := l(v1)⊙ · · · ⊙ l(vp),

so that (l−1)∗
⊙ ∈ Isom(⊙V ∗, ⊙W ∗) . The tensor product of these last two maps yields

l⊙ ⊗ (l−1)∗
⊙ ∈ Isom(⊙V ⊗⊙V ∗, ⊙W ⊗⊙W ∗) .

If (ei)i and (e′i)i are two bases in a real vector space V of dimension p then the corresponding
basis transformation in V is characterized by some matrix B ∈ GL(p, R) , or equivalently by
the corresponding automorphism β ∈ Aut(V ) . Analogously, a basis transformation in a free
Zn2 -module M of rank r over A is characterized by some Zn2 -matrix B ∈ Zn2 GLγ0(r, A) that
can be identified with an automorphism

β ∈ AutA,γ0(M) .

The Zn2 -transpose of the inverse of B corresponds to (β−1)∗ ∈ AutA,γ0(M
∗) and we use these

automorphisms to construct

ΦB := β⊙ ⊗ (β−1)∗
⊙ ∈ AutA,γ0(K) .

Since ΦB is actually an invertible cochain map from (K, δ) to itself, by applying the cohomology
functor H to it we obtain

H(ΦB) ∈ AutA,γ0(H(K, δ)) ,
the map that characterizes the basis transformation in H(K, δ) which corresponds to the basis
transformation in M characterized by β . Observing that

AutA,γ0(H(K, δ)) ∼= Zn2 GLγ0(1, A) ∼= A×γ0
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we get the map
H(Φ) : Zn2 GLγ0(p|q, A) ∋ B 7→ H(ΦB) ∈ A×γ0 ,

which can be shown to satisfy all of the characterizing properties of Zn2 Ber . Since Zn2 Ber
is unique by Theorem 3.2.3 we must have H(ΦB) = Zn2 BerB for all B ∈ Zn2 GLγ0(p|q, A) ,
which implies in particular that a basis transformation in M characterized by B induces a
basis tranformation in H(K, δ) characterized by Zn2 BerB as expected.

Hence we can finally set
Zn2 BerM := H(K, δ) = [Ω]A .

Note that Zn2 BerM can be thought of as the module of algebraic ‘Zn2 -top-forms’ in view of
its similarities with the module of top forms Det M̃ = Ωp(U) in differential geometry, where
M̃ = Ω1(U) is the module of differential 1-forms over the algebra C∞(U) of smooth functions on
some coordinate domain U of a p-dimensional smooth manifold N . Furthermore, comparing
[Ω] to the volume form dx1 ∧ · · · ∧ dxp in differential geometry suggests referring to [Ω] as
algebraic ‘Zn2 -Berezinian-volume’. Let us stress once again that if a matrix B represents a basis
transformation

e′j = eiB
i
j

in M , then Zn2 BerB represents the corresponding basis transformation

[Ω′] = [Ω]Zn2 BerB (3.4.3)

in Zn2 BerM .

Now consider a Zn2 -manifold N = (N, ON) of dimension p|q and a Zn2 -coordinate-chart
U = (U, µ) of N . Then the free Zn2 -module M := Ω1N (U) over A := ON(U) has total rank

p+
2n−1∑
i=1

qi =: p+ q

and in the particular case n = 2 a basis of M is given by

(ei)i = (dx, dy, dξ, dη) ,

where dx stands for the differentials of the p coordinates of degree (0, 0) , dy represents the
differentials of the q1 coordinates of degree (1, 1) and similarly for dξ and dη . Fixing γ = (0, 1)
we obtain

(ei[γ])i = (dx[γ], dy[γ], dξ[γ], dη[γ]) ,

where the degrees are given by ((0, 1), (1, 0), (0, 0), (1, 1)) . Furthermore we have the dual
basis

(εi)i = (∂x, ∂y, ∂ξ, ∂η)

where each εi has the same degree as the corresponding ei. These bases lead to the Z2
2-

Berezinian-volume

Ω = dx[γ]⊙ dy[γ]⊗ ∂ξ ⊙ ∂η =: Ω(x, y, ξ, η) = Ω(µ)

and to the module

(Z2
2BerΩ

1N )(U) := Z2
2BerΩ

1N (U) = [Ω]ON(U) = {[Ω(µ)]f(µ)} ,

of ‘Z2
2-top-forms’ of N over U or local Z2

2-Berezinian-sections of N over U .
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In order to investigate the coordinate transformation law for local Berezinian sections we
consider the case n = 1 and let Φµν be a generic supercoordinate transformation from µ = (x, ξ)
to ν = (y, η) given by{

y = y(x, ξ)

η = η(x, ξ)
, and accordingly

{
x = x(y, η)

ξ = ξ(y, η)
.

The corresponding basis transformation in M = Ω1N (U) verifies

dy = dx ∂xy + dξ ∂ξy and dη = dx ∂xη + dξ ∂ξη

or, more precisely,

dyj =
∑
i

dxi ∂xiy
j +
∑
a

dξa ∂ξay
j and dηb =

∑
i

dxi ∂xiη
b +
∑
a

dξa ∂ξaη
b

and is thus characterized by the matrix

B =

 t∂xy
t∂xη

t∂ξy
t∂ξη

 =

Z2t ∂xy −∂ξy

∂xη ∂ξη

 = Z2tZ2 JacΦµν ∈ Z2GL0(p|q, A) .

The Z2-Berezinian of B is then given by

Z2BerB = Z2Ber
(Z2tZ2 JacΦµν

)
= Z2Ber(Z2 JacΦµν) ∈ A×0 = ON(U)×0 ,

where the second equality follows from the fact that the Zn2 -Berezinian, just as the classical
determinant, is invariant with respect to taking the transpose of a matrix. This result can
actually be generalized to an arbitrary n ≥ 1 , so that we have

[Ω(ν)] = [Ω(µ)] Zn2 Ber(Zn2 JacΦµν) , (3.4.4)

in view of (3.4.3).

In order to find out which properties the transformation law for local Berezinian sections
should have we start considering transformation laws in different contexts.

For instance, a (p, q)-tensor T ∈ ⊗pqV over some real finite-dimensional vector space V can

be defined as a tuple (T
i1···ip
j1···jq ) of components in every basis (ei)i of V such that the coherent

transformation law
T
i1···ip
j1···jq = Bi1

a1
· · ·Bip

apB
′b1
j1
· · ·B′bqjq T

′a1···ap
b1···bq

holds. Here B′ = B−1 and ‘coherent’ means, for instance in the case (p, q) = (1, 0), that if

T i = Bi
aT
′a , T ′a = Ca

b T
′′b , T i = Di

bT
′′b

characterize basis transformations between (ei)i and (e′i)i , between (e′i)i and (e′′i )i and between
(ei)i and (e′′i )i respectively, then the matrices D and BC coincide. This is the case since

Di
bei = e′′b = Ca

b e
′
a = Ca

bB
i
aei = (BC)ibei .

Similarly, a global vector field X ∈ Γ(TN) on a smooth manifold N can be defined in terms
of local vector fields

∑
iX

i∂xi for some X i ∈ C∞(U) on every coordinate chart (U, x) of N in
conjunction with the coherent transformation law

X i = ∂yjx
iY j .
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In this case, coherence refers to the fact that if additionally to the above transformation between
x- and y-coordinates we have transformations from y- to z-coordinates and from x- to z-
coordinates given by

Y j = ∂zky
jZk and X i = ∂zkx

iZk

then the matrices (∂zx) and (∂yx)(∂zy) coincide. This is true in view of the theorem of differ-
entiation of composite functions.

Returning to Zn2 -geometry we consider a Zn2 -manifold N = (N, ON) , where the base mani-
fold N is assumed to be orientable and oriented, and an atlas AN of Zn2 -charts of N . Then we
define a global Zn2 -Berezinian-section

σ ∈ (Zn2 BerΩ1N )(N)

of N as a family
[Ω(µ)]f(µ), [Ω(ν)]g(ν) , ...

of local Zn2 -Berezinian-sections of N indexed by the Zn2 -charts of AN that satisfy the coherent
transformation law

f(µ) = Zn2 Ber(Zn2 JacΦµν)ϕ
∗(g(ν)) , (3.4.5)

which is also referred to as gluing condition and where Φµν = Φ = (ϕ, ϕ∗) denotes the transfor-
mation from µ- to ν-coordinates.

Condition (3.4.5) is natural since if the local sections can be glued they coincide on the
coordinate overlaps, i.e., due to (3.4.4), the section [Ω(µ)]f(µ) coincides with the section

[Ω(ν)]g(ν) = [Ω(µ)] Zn2 Ber(Zn2 JacΦµν)g(ν(µ)) = [Ω(µ)] Zn2 Ber(Zn2 JacΦµν)ϕ
∗(g(ν)) .

In order to check whether (3.4.5) actually defines a coherent transformation law we con-
sider µ-, ν- and ω-coordinates and denote the coordinate transformations between µ- and
ν-coordinates and between ν- and ω-coordinates by Φµν and Ψνω respectively. Accordingly, the
transformation from µ- to ω-coordinates is given by Ψνω ◦ Φµν . Then we have, omitting the
prefix Zn2 ,

f(µ) = Ber(JacΦµν)ϕ
∗(g(ν))

and
ϕ∗(g(ν)) = ϕ∗(Ber(JacΨνω)ϕ

∗(ψ∗(h(ω))) .

Thus f(µ) can be expressed by

f(µ) = Ber(JacΦµν)ϕ
∗(Ber(JacΨνω)(ϕ

∗ ◦ ψ∗)(h(ω)) (3.4.6)

and by
f(µ) = Ber(Jac(Ψνω ◦ Φµν))(ϕ

∗ ◦ ψ∗)(h(ω)) . (3.4.7)

Since the Zn2 -Berezinian is multiplicative we get

Ber(Jac(Ψνω ◦ Φµν)) = Ber(ϕ∗(JacΨνω) · JacΦµν) = Ber(ϕ∗(JacΨνω)) · Ber(JacΦµν) .

Switching the order of Ber and ϕ∗ in the expression on the right-hand side and taking into
account that ϕ∗(Ber(JacΨνω)) and Ber(JacΦµν) commute as they are of degree γ0 we can
conclude that (3.4.6) and (3.4.7) are equal and therefore (3.4.5) is a coherent transformation
law.

In the same fashion as (Zn2 BerΩ1N )(N) we can define (Zn2 BerΩ1N )(W ) for any W ∈
Open(N) and since restrictions and the gluing property are included in these definitions we
obtain that Zn2 BerΩ1N is a locally free rank 1 sheaf of Zn2 -modules over ON , i.e. a Zn2 -vector
bundle of rank 1 over N . We refer to Zn2 BerΩ1N as the Zn2 -Berezinian-sheaf of N .
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3.4.2 Integration on Z2-manifolds

In Section 3.3 we discussed how integration of global top-forms Ωp(M) over an oriented smooth
manifold M of dimension p works. Similarly, we would now like to integrate global Z2-
Berezinian-sections (Z2BerΩ

1N )(N) over a Z2-manifold N of dimension p|q whose base man-
ifold is oriented. For this we consider a global Z2-Berezinian-section σ ∈ (Z2BerΩ

1N )(N)
that is compactly supported in a Z2-coordinate-domain U ⊆ N . The restriction N|U can be

identified with a Z2-domain U equipped with Z2-coordinates µ = (x, ξ) and σ is locally given
by

σ|U = [Ω(µ)]f(µ)

= [dx[1]⊗ ∂ξ]f(x, ξ)
= [dx1[1]⊙ · · · ⊙ dxp[1]⊗ ∂ξq ⊙ · · · ⊙ ∂ξ1 ]f(x, ξ)
= [dx1 ∧ · · · ∧ dxp ⊗ ∂ξq · · · ∂ξ1 ]f(x, ξ) ,

where the change of notation between the second to last and the last line is motivated by the
fact that the differentials dxi[1] as well as the partial derivatives ∂ξa anticommute. The integral
of σ over N is then given byˆ

N
σ =

ˆ
U
σ|U =

ˆ
U
[Ω(µ)]f(µ) =

ˆ
U
[dx1 ∧ · · · ∧ dxp ⊗ ∂ξq · · · ∂ξ1 ]f(x, ξ) .

In Section 3.3 we defined the integral
´
U
dx1 ∧ · · · ∧ dxp f(x) for f ∈ C∞c (U) to be equal to the

Lebesgue integral
´
U
dx1 · · · dxp f(x) and verified that this integral is independent of the choice

of coordinates in U . Therefore, we would like to transformˆ
U
[dx1 ∧ · · · ∧ dxp ⊗ ∂ξq · · · ∂ξ1 ]f(x, ξ)

into an expression similar to
´
U
dx1 ∧ · · · ∧ dxp f(x) in order to be able to apply the definition

from differential geometry. Hence, it is natural to setˆ
N
σ =

ˆ
U
[dx1 ∧ · · · ∧ dxp ⊗ ∂ξq · · · ∂ξ1 ]f(x, ξ)

:=

ˆ
U

dx1 ∧ · · · ∧ dxp(∂ξq · · · ∂ξ1f(x, ξ))

=

ˆ
U

dx1 ∧ · · · ∧ dxpf1...q(x)

=

ˆ
U

dx1 · · · dxp f1···q(x) , (3.4.8)

where f1...q ∈ C∞c (U) is the coefficient of the monomial ξ1ξ2 . . . ξq in the compactly supported
superfunction f(x, ξ) .

Remark 3.4.4. This text differs from most of the literature about integration on supermani-
folds as it attempts to approach the idea of differentiating with respect to the odd parameters
instead of integrating with respect to them in a natural way instead of providing the definition
of a Z2-integral without any further explanation.

Let V ⊆ N be another Z2-coordinate domain of N that contains the support of σ and
denote the Z2-coordinates of N|V

∼= V by ν = (y, η) . According to the above definition the
integral of σ over N can thus be expressed asˆ

N
σ =

ˆ
V
[Ω(ν)]g(ν) =

ˆ
V
[dy1 ∧ · · · ∧ dyp ⊗ ∂ηq · · · ∂η1 ]g(y, η) =

ˆ
V

dy1 · · · dyp g1···q(y) .
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In order to prove that
´
N σ is coordinate-independent we need to show that

ˆ
U
[Ω(µ)]f(µ) =

ˆ
V
[Ω(ν)]g(ν) . (3.4.9)

If Φµν = (ϕ, ϕ∗) : U → V , where restrictions are omitted for the sake of simplicity, denotes the
transformation from µ- to ν-coordinates then (3.4.5) implies that

f(µ) = Z2Ber(Z2 JacΦµν)ϕ
∗(g(ν)) ,

so that the statement (3.4.9) that has to be proved becomes

ˆ
V
[Ω(ν)]g(ν) =

ˆ
U
[Ω(µ)]Z2Ber(Z2 JacΦµν)ϕ

∗(g(ν)) . (3.4.10)

This result is called coordination transformation theorem in the Z2-Berezinian-integral and its
proof is based on the following fundamental observation: If (3.4.10) holds for the coordinate
transformations Φµν : U → V and Ψνω : V → W then it holds for Ψνω ◦ Φµν . This is the case
since ˆ

W
[Ω(ω)]h(ω) =

ˆ
V
[Ω(ν)]Z2Ber(Z2 JacΨνω)ψ

∗(h(ω))

=

ˆ
U
[Ω(µ)]Z2Ber(Z2 JacΦµν) · ϕ∗(Z2Ber(Z2 JacΨνω)) · ϕ∗(ψ∗(h(ω))

=

ˆ
U
[Ω(µ)]Z2Ber(Z2 Jac(Ψνω ◦ Φµν)) · (ϕ∗ ◦ ψ∗)(h(ω)) ,

where the first and second equalities follow from the coordinate transformation theorem for
Ψνω and for Φµν respectively and the third equality is based on the same cosideration as the
equality of (3.4.6) and (3.4.7) above. This observation reduces the proof of (3.4.10) to showing
that every Z2-coordinate-transformation Φ can be decomposed in n types of simple coordinate
transformations Φ1, ...,Φn for some n ∈ N and proving that (3.4.10) holds for each of the Φi .

3.4.3 Integration on Z2
2-manifolds

Let N = (N, ON) be a Z2
2-manifold of dimension 1|(1, 1, 1) with oriented base, consider a

Z2
2-Berezinian-section

σ ∈ (Z2
2BerΩ

1N )(N)

that is compactly supported in a Z2
2-coordinate-domain U ⊆ N and assume that N|U is iso-

morphic to the Z2
2-domain U with Z2

2-coordinates µ = (x, y, ξ, η) . Then σ locally reads as

σ|U = [Ω(µ)]f(µ)

= [dx[γ]⊙ dy[γ]⊗ ∂ξ ⊙ ∂η]f(x, y, ξ, η)
= [dx⊙ dy ⊗ ∂η∂ξ]f(x, y, ξ, η) ,

where the change of notation between the second to last and the last line is due to the fact
that the partial derivatives ∂ξ and ∂η commute with each other and the differentials dx and
dy commute with each other whether we shift their degree by one of the two possible values of
gamma or not. The integral of σ over N is given by

ˆ
N
σ =

ˆ
U
σ|U =

ˆ
U
[Ω(µ)]f(µ) =

ˆ
U
[dx⊙ dy ⊗ ∂η∂ξ]f(x, y, ξ, η)
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and we need an idea for the definition of the integral on the right-hand side. The above discus-
sion of Z2-integrals suggests differentiating f(x, y, ξ, η) with respect to the odd parameters ξ
and η , which leads to the following integral with respect to the standard variable x and with
respect to the formal parameter y :

ˆ
U
[dx⊙ dy ⊗ ∂η∂ξ]f(x, y, ξ, η) :=

ˆ
dx

ˆ
dy ∂η∂ξf(x, y, ξ, η) =

ˆ
dx

ˆ
dy

∞∑
k=0

f11k(x)y
k .

From this expression we would like to obtain an integral of a smooth compactly supported
function in x with respect to x that we can define as in standard differential geometry. For any
ℓ ∈ [0, ∞) we have f11ℓ ∈ C∞c (U) and therefore, for any ℓ ∈ [0, ∞) , setting

ˆ
dy

∞∑
k=0

f11k(x)y
k := f11ℓ(x)

allows us to define a Lebesgue integral as in the Z2-case. One could argue that since dy is in the
space that is dual to the space ∂ξ and ∂η belong to and we chose the coefficient of the highest
degree term in ξη we should now choose the coefficient of the lowest degree term in y . This
means we set ˆ

dx

ˆ
dy

∞∑
k=0

f11k(x)y
k :=

ˆ
U

dx f110(x) ,

where the integral on the right-hand side is the Lebesge integral over the subset of Rp that is
isomorphic to U .

To validate this idea for the integral of a Z2
2-Berezinian-section over a Z2

2-manifold we
have to prove coordinate-independence, i.e. the Z2

2-analogue to (3.4.10). However, there is a
fundamental problem that impedes a straightforward implementation of our idea and in the
following we will illustrate this problem by means of an example.

Let
N = U1|(1,1,1) = ( ]0, 1[ , C∞1|(1,1,1))

be a Z2
2-manifold equipped with global coordinate systems µ = (x, y, ξ, η) and ν = (X, Y, Ξ, Ξ)

and consider the coordinate transformation Φµν given by
X = x

Y = y + ξη

Ξ = ξ

Ξ = η .

(3.4.11)

Furthermore, pick a function α ∈ C∞c ( ]0, 1[ ) that verifies
´ 1
0
dx α(x) = 1 and define a Z2

2-
Berezinian-section

σ ∈ (Z2
2BerΩ

1N )( ]0, 1[ ) ,

compactly supported in ]0, 1[ , by setting

σ = [Ω(ν)]g(ν) = [Ω(X, Y, Ξ, Ξ)]α(X)Y .

Assuming that the coordinate-independence theorem holds for the integral of σ over N we
compute ˆ

N
σ =

ˆ
U
[Ω(ν)]g(ν) =

ˆ
]0,1[

dx 0 = 0
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and ˆ
N
σ =

ˆ
U
[Ω(µ)]Z2

2Ber(Z2
2 JacΦµν)ϕ

∗(g(ν))

=

ˆ
U
[Ω(µ)]Z2

2Ber


1 0 0 0
0 1 η ξ

0 0 1 0
0 0 0 1

 (α(x)y + α(x)ξη)

=

ˆ
]0,1[

dx α(x) = 1 ,

which is a contradiction and thus means that we cannot integrate compactly supported Z2
2-

Berezinian-sections over Z2
2-manifolds in a straightforward way. More information on the mod-

ification of signs that is used in the Z2
2-Jacobian can be found for instance in [19], page 9.

This problem also appears in Z2-geometry, both in the approach described in this text and
in the alternative deWitt-Rogers approach. For example, using our approach to integration on
Z2-manifolds we can create a problematic situation that is similar to the one in Z2

2-geometry
described above as follows.

Consider the Z2-manifold
N = U1|2 = ( ]0, 1[ , C∞1|2)

with global coordinate systems µ = (x, ξ1, ξ2) and ν = (y, η1, η2) and a coordinate transfor-
mation Φµν given by 

y = x+ ξ1ξ2

η1 = ξ1

η2 = ξ2 .

(3.4.12)

Define σ ∈ (Z2BerΩ
1N )( ]0, 1[ ) by setting

σ = [Ω(ν)]g(ν) = [Ω(y, η1, η2)]y .

Then we have ˆ
N
σ =

ˆ
U
[Ω(ν)]g(ν) =

ˆ
]0,1[

dx 0 = 0

and ˆ
N
σ =

ˆ
U
[Ω(µ)]Z2Ber(Z2 JacΦµν)ϕ

∗(g(ν))

=

ˆ
U
[Ω(µ)]Z2Ber

 1 −ξ2 ξ1

0 1 0
0 0 1

 (x+ ξ1ξ2)

=

ˆ
]0,1[

dx 1 = 1 ,

which means that the integral
´
N σ is not coordinate-independent. Note that in this case σ is

not compactly supported in ]0, 1[ and as stated above we can ensure coordinate-independence
when requiring the Z2-Berezinian-sections that are integrated to be compactly supported in
some coordinate domain. In Z2

2-geometry it does not suffice to assume σ to be compactly
supported in order to avoid the problem generated by transformations of the type (3.4.11),
(3.4.12). However, there are other strategies to avoid this problem in Z2

2-geometry, two of
which will be discussed in the following.
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The first strategy comprises a reduction of the set of integrable objects. More precisely,
one can prove that if the coefficient g(ν) of a Z2

2-Berezinian-section [Ω(ν)]g(ν) does not contain
the term g100(X)Y then the coefficient f(µ) of this section in any other coordinate system µ
does not contain the term f100(x)y and refer to sections with such coefficients as compactly
supported with respect to the degree (1, 1) parameter y . It can be shown that the integral of
Z2

2-Berezinian-sections which are compactly supported with respect to x and with respect to y
is well-defined, see [32], page 15.

The second strategy is new and involves changing the nature of the integrable objects. This
idea comes from complex analysis.

Remark 3.4.5. Let a1, ..., aN be elements in a simply connected open subset U ⊆ C and
consider a function f : U → C that is holomorphic in V := U\{a1, ..., aN} , i.e. that is complex
differentiable in V . This also means that f is complex analytic in V , i.e. for each z0 ∈ V there
is a power series at z0 that converges to f(z) at every point z that is close enough to z0 . If γ
is a positively oriented simple closed rectifiable curve in V the residue theorem states that the
integral of f around γ is given by

˛
γ

dz f(z) = 2πi
∑
k

R(f, ak) ,

where the sum is taken over all k such that ak is inside γ and R(f, ak) denotes the residue of f
at ak , which can be computed by differentiating and taking limits. The residue of f at ak can
be seen as

1

2πi

˛
C

dz f(z) ,

where C denotes a positively oriented simple closed rectifiable curve in V that contains ak and
none of the other singularities. Moreover, for f defined as a Laurent series about ai , i.e. defined
as

f(z) =
+∞∑

k=−∞

ck(z − ai)k

its residue at ai is given by R(f, ai) = c−1 . In particular, the integral of a Laurent series about
0 that is holomorphic in C\{0} around a positively oriented simple closed rectifiable curve γ
that contains 0 is given by ˛

γ

dz

+∞∑
k=−∞

ckz
k = 2πi c−1 .

Our idea is to proceed similarly in Z2
2-geometry and set

ˆ
dy

+∞∑
k=−m

fk11(x)y
k := f−111(x) .

To implement this idea we consider a Z2
2-domain N = U1|(1,1,1) = (U, C∞1|(1,1,1)) with global

coordinates µ = (x, y, ξ, η) , where U ∈ Open(R) . Denoting C∞1|(1,1,1)(U) by C∞(µ) , a generic

superfunction f ∈ C∞(µ) is given by

f(µ) =
+∞∑
k=0

 ∑
a,b∈{0,1}

fkab(x)ξ
aηb

 yk
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and we now define a generic Laurent series L ∈ L∞(µ) by setting

L(µ) =
∞∑

k=−m

 ∑
a,b∈{0,1}

fkab(x)ξ
aηb

 yk ,

where the lower bound defined by m ∈ N is finite but not fixed. It can be verified that L∞(µ)
is a Z2

2-commutative associative unital R-algebra. Note that dividing a superfunction by a
non-negative power of y yields a Laurent series:∑+∞

k=0

(∑
a,b∈{0,1} fkab(x)ξ

aηb
)
yk

ym
=

∞∑
κ=−m

 ∑
a,b∈{0,1}

fκ+m ab(x)ξ
aηb

 yκ ∈ L∞(µ) .

This indicates that L∞(µ) is the localization of C∞(µ) at the multiplicative subset P(µ) =
{ym |m ∈ N} ⊆ C∞(µ) , where multiplicative subset refers to a multiplicatively closed subset
that contains 1 . Since localizations of Z2

2-commutative rings such as C∞(µ) are similar to
localizations at commutative rings we recall the concept of localization in the commutative
context.

Remark 3.4.6. A localization of a commutative ring R at a multiplicative subset S ⊆ R can
be seen as a method to add inverses to R . More precisely, a localization of R at S is defined
as a commutative ring L together with a ring morphism L : R → L such that the image L(s)
of any element s ∈ S is invertible in L .

The construction of a localization (L, L) can be done by generalizing the construction of
the rational numbers Q . First we introduce an equivalence relation ∼ in R× S by setting

(r, s) ∼ (r′, s′)⇔ (rs′ − r′s)σ = 0

for some σ ∈ S . Denoting the equivalence class of (r, s) ∈ R × S under ∼ by r
s
we define the

commutative ring

L := RS−1 :=
{r
s
| r ∈ R, s ∈ S

}
and the ring morphism

L : R ∋ r 7→ r

1
∈ RS−1 .

Since L(s) = s
1
has inverse 1

s
∈ RS−1 for all s ∈ S we can confirm that (RS−1, L) is a localiza-

tion of R at S .

It can be observed that (RS−1, L) is universal in the sense that for any ring morphism
r : R→ R that sends every element s ∈ S to an invertible element in the commutative ring R
there exists a unique ring morphism u : RS−1 → R such that the following diagram commutes:

R RS−1

R .

L

r
u

If L is injective this universal property means that for any ring morphism r : R → R valued
in a commutative ring that sends every element in S to a unit in R there exists a unique ring
morphism u that coincides with r on R .
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Continuing the implementation of the above idea from complex analysis in Z2
2-geometry we

consider a Z2
2-manifold N = (N, ON) of dimension 1|(1, 1, 1) with oriented base manifold and

an atlas AN of Z2
2-coordinate-charts of N .

Definition 3.4.7. A generalized Z2
2-Berezinian-section of N over N is a family

[Ω(µ)]L(µ), [Ω(ν)]Λ(ν), ...

indexed by the Z2
2-charts in AN of local generalized Z2

2-Berezinian-sections whose coefficients
are Laurent series and satisfy the coherent transformation law

L(µ) = Z2
2Ber(Z2

2 JacΦµν)ϕ
∗∼(Λ(ν)) , (3.4.13)

where Φµν : µ = (x, y, ξ, η) → ν = (X, Y,Ξ, Ξ) is the coordinate transformation from µ to ν
and

ϕ∗
∼
(Λ(ν)) :=

+∞∑
k=−m

∑
a,b

fkab(ϕ
∗X)(ϕ∗Ξ)a(ϕ∗ Ξ)b(ϕ∗Y )k . (3.4.14)

To make sure the right-hand side of (3.4.14) is an element in L∞(µ) , is suffices to show
that (ϕ∗Y )−1 ∈ L∞(µ) , which can be done, but we will not repeat the proof here. Indeed,
then (ϕ∗Y )k ∈ L∞(µ) for all negative k and the whole term indexed by k in the series over k
belongs to L∞(µ) , as the sum over a, b is a superfunction. It follows that the finite sum over
all negative k is in L∞(µ) just as the series over all k , since the pullback of a superfunction
is a superfunction. Thus we actually have ϕ∗

∼
(Λ(ν)) ∈ L∞(µ) and obtain that ϕ∗

∼
is a ring

morphism from L∞(ν) to L∞(µ) that coincides with ϕ∗ on C∞(ν) .

In view of the universal property of the localization (L∞(ν), Lν) of C∞(ν) at P(ν) we make
the following observation. Denoting the localization map of the localization L∞(µ) of C∞(µ)
at P(µ) by Lµ and noting that

Lµ ◦ ϕ∗ : C∞(ν)→ L∞(µ)

is a ring morphism that sends every Y k ∈ P(ν) to

Lµ(ϕ
∗ Y k) =

(ϕ∗Y )k

1
,

which is invertible in L∞(µ) since (ϕ∗Y )−k ∈ L∞(µ) . Hence, in view of universality, there exists
a unique ring morphism u such that the following diagram commutes:

C∞(ν) L∞(ν)

C∞(µ)

L∞(µ) .

Lν

ϕ∗

u

Lµ

Since in the case of Laurent series the multiplicative subset at which we localize does not
contain any zero divisor, the localization maps are injective and we can rephrase our preceding
statement saying that there exists a unique ring morphism u : L∞(ν)→ L∞(µ) that coincides
with ϕ∗ on C∞(ν) . Hence ϕ∗∼ is the unique ring morphism from L∞(ν) to L∞(µ) that coincides
with ϕ∗ on C∞(ν) .
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We are now prepared to check that the transformation law (3.4.13) is indeed coherent. This
means that if Φµν : µ→ ν and Ψνω : ν → ω are coordinate transformations, we must have

L(µ) = Z2
2Ber(Z2

2 JacΦµν)ϕ
∗(Z2

2Ber(Z2
2 JacΨνω))(ϕ

∗∼ ◦ ψ∗∼)(l(ω))
= Z2

2Ber(Z2
2 Jac(Ψνω ◦ Φµν))(ψ ◦ ϕ)∗

∼
(l(ω)) .

As we already know that

Z2
2Ber(Z2

2 JacΦµν)ϕ
∗(Z2

2Ber(Z2
2 JacΨνω)) = Z2

2Ber(Z2
2 Jac(Ψνω ◦ Φµν)) ,

the above equality boils down to the coherence condition

(ψ ◦ ϕ)∗∼ = ϕ∗
∼ ◦ ψ∗∼ . (3.4.15)

Although (3.4.15) is trivial when considering the pullbacks without extending them to Laurent
series, its direct verification in the case involving extensions is not obvious at all. However, we
can argue that (ψ ◦ϕ)∗∼ is the unique ring morphism from L∞(ω) to L∞(µ) that coincides with
ϕ∗ ◦ ψ∗ on C∞(ω) and since ϕ∗

∼ ◦ ψ∗∼ is a ring morphism from L∞(ω) to L∞(µ) that coincides
with ϕ∗ ◦ ψ∗ on C∞(ω) both morphims must be equal.

Finally, if N = (N, ON) is a Z2
2-manifold of dimension 1|(1, 1, 1) with oriented base, we

define the integral over N of a generalized Z2
2-Berezinian-section s that is compactly supported

in a Z2
2-coordinate-domain U ⊆ N such that N|U is isomorphic to the Z2

2-domain U with

coordinates µ = (x, y, ξ, η) , by setting
ˆ
N
s =

ˆ
U
[Ω(µ)]L(µ) =

ˆ
U
[dx⊙ dy ⊗ ∂η∂ξ]L(x, y, ξ, η) :=

ˆ
dx

ˆ
dy

+∞∑
k=−m

fk11(x)y
k

as before and setting ˆ
dy

+∞∑
k=−m

fk11(x)y
k := f−111(x)

motivated by the development from complex analysis discussed above so that we finally obtain
the definition ˆ

N
s :=

ˆ
U

dx f−111(x) ,

where the right-hand side denotes the Lebesgue integral of the coefficient f−111 ∈ C∞c (U) with
respect to the standard coordinate x . It can be shown that this definition is coordinate-
independent as desired.

3.4.4 Outlook

Having discussed integration of compactly supported generalized Z2
2-Berezinian-sections over

Z2
2-manifolds of dimension 1|(1, 1, 1), the question arises whether this integration theory can

be extended to ‘higher’ settings. If N = (N,O) is a Zn2 -manifold of dimension p|q whose ideal
sheaf is denoted as usual by J and which locally has Zn2 -coordinates

µ = (x, y, ξ) = (x1, ..., xp, y1, ..., yq0 , ξ1, ..., ξq1) ,

where x denotes the coordinates of degree γ0 , the tuple y the coordinates of even degree different
from γ0 and ξ the coordinates of odd degree, we generalize Laurent series and end up with
generalized fractions in the sense of algebraic topology. They appear as an explicit description
of the q0-th O(U)-module Hq0

J (U, O) of the J -local cohomology of O over U ∈ Open(N) and
we can integrate the compactly supported vectors of this module. This Zn2 -integration-theory
is related to Grothendieck duality and requires the use of an appropriate group of admissible
coordinate transformations that allows to work around the problematic monomials of the type
(3.4.11) and (3.4.12) discussed in Subsection 3.4.3.
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