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Abstract

This text is a short but comprehensive introduction to the basics of supergeometry and
includes some of the recent advances in colored supergeometry. We do not aim for a standard
text that states results and proves them more or less rigorously, but all too often offers little
insight to the uninformed reader. Instead we opted for a smooth exposition of the successive
themes, choosing an order and an approach which are close to the way these pieces of math-
ematics could have been or were discovered, thereby highlighting the reasons for the various
choices and facilitating deeper understanding. We hope that the text will be useful for PhD
students and researchers who wish to acquire knowledge in the geometry of supersymmetry.
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Introduction

The idea of supersymmetry arose due to insufficiency and incoherence of the so-called standard
model of fundamental particles and interactions. The standard model asserts that matter is
composed of twelve fundamental particles, which are called fermions and can be further divided
into six quarks and six leptons. Moreover, the fundamental interactions between these particles,
namely gravitational force, electromagnetic force, weak nuclear interaction and strong nuclear
interaction, can also be viewed as particles. The standard model includes the five particles called
bosons that correspond to the three last interactions, the photon acting as electromagnetic
force, W_, W, and Z;, acting as weak nuclear interaction and the gluon corresponding to
strong nuclear interaction. In order to explain the concept of mass an additional particle called
Higgs boson is introduced. The Higgs boson appears in the form of a field the other particles
can interact with to obtain mass. However, the standard model does not explain gravity. While
gravitational force is mostly negligible when working with subatomic particles it does play an
important role in the creation of the universe and in the general theory of relativity. Therefore,
it is highly desirable to establish a unified theory that includes all fundamental interactions.
One of the theories that might lead to this goal is supersymmetric string theory. String theories
are based on the idea that elementary particles originate from vibrating strings, so that the
type of vibration determines which of the particles is produced. Supersymmetric means that
each of the particles has a corresponding supersymmetric shadow particle. More precisely, with
each fermion we associate a boson and conversely each boson is coupled with a fermion.

Smooth supermanifolds, or Zs-manifolds, are generalizations of smooth manifolds whose
local coordinates consist of standard commuting variables of Zj-degree 0 and formal anticom-
muting parameters of Zs-degree 1, so that their function sheaf carries a Zs-grading. They are
the core of the geometry of supersymmetry or supergeometry.

Colored supermanifolds, also called Z3"-manifolds or Zj-manifolds, have function sheaves
with a Z3-grading and local coordinates of all ZJ-degrees that obey the commutation rule
induced by the standard scalar product of Z . They have been introduced in a series of papers
[20, 16, 19, 32] which investigate their category, their differential calculus and part of their
integration theory including the ZJ-generalization of the Berezinian. The splitting theorem
and the Frobenius theorem for Z3-manifolds are proved in [17] and [18], respectively, products
of Zy-manifolds and related functional analytic questions are studied in [10] and [9], whereas
[8] and [11] clarify the functor of points approach to Zj-manifolds — which is of fundamental
importance in physics — and use it to study Zj-Lie group actions on Zj-manifolds. Colored
supermanifolds and the corresponding higher supergeometry show significant differences from
classical supergeometry, especially in the proofs of standard supergeometric results, which are
mostly more subtle in the ZJ-case, and in integration theory, which is significantly different
from the standard supergeometric situation, the novel aspect being the integration with respect
to even non-zero degree parameters.

The motivation to introduce and study Z5-geometry is broad. First Zj-gradings with n > 2
can be found in the theory of parastatistics [22, 24, 25, 36] and in relation to an alternative
approach to supersymmetry [34]. Higher graded generalizations of the super Schrodinger alge-
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bra and the super Poincaré algebra have appeared in [1] and [6]. Furthermore, such gradings
are used in the theory of mixed symmetry tensors as found in string theory and some formu-
lations of supergravity [7]. It must also be pointed out that quaternions and more general
Clifford algebras can be understood as Z5-graded algebras whose vectors commute according
to the above-mentioned Zj-scalar-product rule [2, 3, 30, 31]. Finally, any ‘sign rule’ can be
interpreted in terms of a Zj-commutation rule [16].

Background information on various sheaf-theoretical concepts can be found in Hartshorne
[26, Chapter II] and Tennison [33]. There are several good introductory books on the theory
of supermanifolds including Bartocci, Bruzzo & Herndndez Ruipérez [4], Bernstein, Leites,
Molotkov & Shander [5], Carmeli, Caston & Fioresi [12], Deligne & Morgan [21], Leites [27],
Manin [29] and Varadarajan [35]. For categorical notions we refer to Mac Lane [28].

Our text is structured as follows.

In the first chapter we show how even and odd supercoordinates occur naturally when we
consider a system made of both bosonic and fermionic particles. If we glue such supercoordi-
nate domains together, we get the concept of supermanifold which is reminiscent of a standard
smooth ‘base’ manifold surrounded by a ‘cloud of odd stuff’. Special attention is paid to a care-
ful introduction of a minimum of sheaf-theoretic notions and the definition of supermanifolds
as locally ringed spaces of algebras of superfunctions. The question of the invertibility of a
superfunction naturally leads to the projection of superfunctions onto base manifold functions
and to the kernel [J of this projection, which plays a prominent role in the theory of superman-
ifolds M. In particular, J can be interpreted as a neighborhood of the superfunction 0 and so
it induces a basis of neighborhoods of superfunctions that defines the so-called 7-adic topology
on the algebra O, of superfunctions. We explain why all supermorphisms Oy — O, are
continuous with respect to this topology and prove the fundamental supermorphism theorem,
which makes supergeometry a reasonable theory.

With this short description of the category of supermanifolds in mind, we move to differ-
ential calculus on supermanifolds, contextualizing each concept by means of the corresponding
concept in differential geometry. After a brief digression on the conditions needed to encode
all the information of a sheaf-theoretic geometry (sheaf of vector fields of a manifold) into a
geometry that uses mainly global objects (vector fields defined globally on the manifold), we
define the sheaf of vector fields or tangent sheaf of a supermanifold, avoiding the problem that
supergeometry, unlike differential geometry, lacks a good concept of point. From a local basis
of this locally free tangent sheaf of modules over superfunctions or, equivalently this super-
vector bundle, we derive a basis of the tangent space of a supermanifold at a point m of its
base manifold, thus proceeding in reverse order with respect to differential geometry. We are
now ready to define the derivative at m of a morphism between supermanifolds in the locally
ringed space environment in which we work. Since the superworld is slightly non-commutative
(anticommuting coordinates), the Jacobian matrix of a composite of morphisms between su-
permanifolds turns out to be the product of the Jacobian matrices of the components only if
we change the sign of some entries of the Jacobian matrix, which leads to what we call the
modified Jacobian matrix. Similar requirements that arise in linear superalgebra are mentioned
below. We close this first chapter by a coordinate-dependent but informative approach to the
two possible de Rham complexes of a supermanifold, thereby introducing the so-called Deligne
and Bernstein-Leites sign conventions for the commutation of super differential forms.

The second chapter consists of a brief introduction to higher supergeometry, which high-
lights its relation to other areas of mathematics and physics, and the fact that this non-trivial
generalization of standard supergeometry is not only necessary but also sufficient. As said
above, Zb-manifolds are, roughly speaking, supermanifolds whose function sheaf carries a Z3-
grading and whose local coordinates are ZJ-commutative, i.e. commute according to the sign
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rule given by the standard scalar product of the involved Z-degrees. Since therefore even coor-
dinates can anticommute, odd coordinates can commute and coordinates with nonzero degree
need not be nilpotent, local higher superfunctions are necessarily formal power series in the
nonzero degree coordinates with coefficients in the smooth functions with respect to the degree
zero coordinates. The fundamental invertibility criterion of standard superfunctions mentioned
above is based on nilpotency, but remains valid in colored supergeometry despite the loss of
nilpotency, precisely because we use formal power series. Furthermore, the crucial supermor-
phism theorem goes through in the colored situation, since the colored superfunction sheaf is
Hausdorff-complete. We explain in a simple way what this means and how we use it in the
proof of this theorem.

In the last chapter, a discussion of linear Zj-algebra provides a basis for the definition of
integrals over Z5-manifolds.

For instance, linear maps between free modules over a Zj-graded Zj-commutative algebra
A are represented by Zj-graded block-matrices whose blocks consist of entries belonging to a
term of A whose degree is determined by the position of the block and the Z3-degree of the
matrix under consideration. We explain in detail the non-standard definitions of the product
of such a matrix by a scalar in A, of the transpose of such a matrix and of its trace. Connected
to this colored supertrace is its group analogue - the colored Berezinian determinant, or just
Z35-Berezinian. We discover this generalization of the standard Berezinian or Z,-Berezinian,
explain its explicit expression in terms of quasideterminants in the sense of Gelfand and Retakh,
and compute through instructive examples.

The focus of the chapter is on the determination of integrable objects, i.e. objects that are
defined over a Zj-manifold M and which we can integrate over M in a coordinate-independent
way.

We begin by justifying the definition of oriented smooth manifolds N and by illustrating why
we can integrate global smooth differential forms of highest degree coordinate-independently
over N . We interpret the free module of local top-forms as the determinant module of the free
module of local 1-forms, which is the rank 1 free module over functions whose basis element is
multiplied by the determinant of the Jacobian matrix when we change the local coordinates.
Although there are no top-forms in super- and Z3-geometry, for the free Z3-module of local
Zy-1-forms we find a free rank 1 Z3-module over Zj-functions whose basis element is multiplied
by the Z3-Berezinian of the modified Z3-Jacobian matrix if we change the local Z-coordinates.
We explicitly construct this determinant or Z5-Berezinian module as the only non-vanishing
cohomology module of a cochain complex of ZJ-modules. Its elements can be thought of as
local replacements for the non-existing Z5-top-forms — substitutes we call local Z3-Berezinian
sections — and its basis element can be thought of as local Z3-Berezinian volume. The fact that
the Z3-Berezinian volume gets multiplied by the Zj-Berezinian of the modified Z5-Jacobian
matrix if we change the considered Zj-coordinates, leads to the coherent sheaf condition that
we have to encode in the definition that glues global Z3-Berezinian sections from local ones.
These global sections are the global substitutes for Z}-top-forms and should be the objects that
we can integrate over a Zj-manifold.

In the case n = 1 the results of the previous paragraph allow us to make the definition of the
integral of a compactly supported global Berezinian section over a supermanifold with oriented
base appear natural. More specifically, this Berezinian integration consists of a differentiation
with respect to the odd or degree 1 formal coordinates and a Lebesgue integration with respect
to the even or degree zero ordinary coordinates. We explain why this integral is coordinate-
independent.

In the case n = 2 the Berezinian integration consists in addition to the differentiation with
respect to the formal coordinates of the odd degrees (0, 1) and (1,0) and the Lebesgue integra-
tion with respect to the ordinary coordinates of the even degree (0,0), of an new integration



with respect to the formal coordinates of the even degree (1,1). We point out that this new in-
tegration has one degree of freedom and show that the natural choice of this parameter leads to
a coordinate-free definition of the integral of a global Z2-Berezinian section over a Z3-manifold
with oriented base only if the section is in some sense compactly supported with respect to
the two even coordinate degrees. We find that the obstruction to coordinate-independence is
a universal issue that also appears in standard supergeometry, regardless of which approach to
standard supergeometry one chooses. In fact, the problem lies at the heart of Berezinian inte-
gration: it is the reason for the shortcoming of this theory, which is that one cannot integrate
non-compactly supported sections. As already mentioned, in Z3-geometry a first solution is
to integrate only sections that are compactly supported with respect to both even coordinate
degrees. A second solution originates in complex analysis, changes the nature of the objects we
integrate using their localization and leads to technical problems that we can however solve.

We conclude the chapter with a short description of the integration theory of Z3-manifolds
of arbitrary height n .



Chapter 1

Introduction to supergeometry

1.1 Supersymmetry

Symmetry is one of the most fundamental concepts in mathematics and physics. Supersymme-
try is a symmetry first proposed in string theory in the 1970s but quickly adopted throughout
theoretical physics, particularly to solve several shortcomings of the Standard Model. She as-
sumes that every particle in this model has a so-called supersymmetric partner particle: every
fermion, i.e. every particle with a half-integer quantum spin, corresponds to a boson partner,
i.e. a particle with an integer spin, and vice versa.

If this is indeed true, the new symmetry fixes the mass of the Higgs boson — a particle
that gives the particles predicted by the Standard Model their mass, and explains why the
mass of the Higgs boson is small and gravity is weak. Also, supersymmetry explains that at
high energies, like at the beginning of the universe, all three Standard Model interactions — the
electromagnetic, weak nuclear and strong nuclear interactions — would have the same intensity,
which would be a partial unified theory of forces. Finally, supersymmetry would explain the
dark matter, which makes up most of the matter in the universe and holds the galaxies together,
but which we cannot see. Furthermore, supersymmetry is needed in string theory, and string
theory comes with built-in quantum gravity!

Despite all these potential successes of supersymmetry, it turns out that the most natural
models of supersymmetry cannot exist, implying that if supersymmetry is true nonetheless,
it only exists at very high energies, but as the initial universe gets colder, the superpartners
are massing and decaying so we can’t even observe them at the energies of the Large Hadron
Collider before the 2019-2022 revamp work. On the other hand, supersymmetry leads to a
lot of beautiful and fascinating mathematics with unifying and simplifying effects. Therefore,
regardless of the fate of string theory and supersymmetry in physics, it is definitely worth
pursuing supergeometry and related ideas.

1.2 Supermanifolds

1.2.1 Smooth superdomains

Knowing that we can interpret the quantum state of a particle as a point in a Hilbert space
and denoting the Hilbert state space of a fermion (respectively a boson) by H; (respectively
by Ho) we can model the situation in the following way. Due to the Pauli exclusion principle,
which asserts that two or more fermions cannot occupy the same quantum state, a system with
q fermions can be represented by the exterior product AYH; and a system of p bosons can be
seen as the symmetric product VPH,. Hence, a system of p bosons and ¢ fermions corresponds



to the tensor product
VPHy @ NTH. (1.2.1)

Equivalently, we could take the super vector space Hg @ H; and use its supersymmetric tensor
algebra

O(Ho®H1) = OHo®@ OHy (1.2.2)

to describe the quantum system. Saying that Hgo @ H; is a super vector space means that it
is Zs-graded. This entails that each homogeneous element, i.e. an element which is either in
Ho or in Hq, has a parity: the elements in Hy have parity 0 and are said to be even while
the elements in H; have parity 1 and are referred to as odd. If Hy (respectively H;) is finite
dimensional and has dimension 7 (respectively dimension s), we say that the super vector space
Ho & H, is of dimension r|s. The supersymmetric algebra structure mentioned above is the
supercommutative tensor product

vow=(—1)""w o,

where v, w are homogeneous elements of parity o, w. Note that the supercommutativity
condition implies that odd elements anticommute. Consequently, the square or any higher
power of an odd element is equal to 0. Further, from (1.2.2) we get

@(7‘[0 D Hl) = VHe ® AH;q

(see (1.2.1)).

We now look at a specific super vector space, namely
RPle — RP @ RY.

Let (€?); be a basis of even elements for R? and (el), a basis of odd elements for R?. Then,
any element in our super vector space can be written uniquely as

p q
7 0 a 1 7 a

E coe; + E cle. (cy,cf € R).

i=1 a=1

The dual space
(RPI7)* = Hom (R, R) @ Hom, (RP!, R),

is the super vector space of linear maps of parity 0 and linear maps of parity 1. Since real
numbers are always of parity 0 so that R = R @ {0}, the elements in Homg(R”4, R) send
each even basis vector to some real number and each odd basis vector to 0. The maps in
Hom, (R”4, R) on the other hand send odd basis vectors to real numbers and even basis vectors
to 0. Therefore it is consistent to define the dual basis (g{*); 4 (for [ =0, 1 and A=1,...,p or
A =1,...,q depending on ) by

cteh) = oot

As usual, we can interpret the basis vectors ;' of the dual space (RP?)* as coordinates in the
original space RPI%. When [ = 0 we get even coordinates ° := &}y in RPI? such that

r'a) = ey @) =l ©ey =ala,

i.e. we get standard commutative coordinates. When [ = 1 we obtain odd coordinates £* := €

in R? such that
e =t ol = —f ot = —€'¢", (1.2:3)



i.e. we obtain anticommutative coordinates. Of course, even coordinates commute with odd
ones:
T =gy Ol =] Oegy ="

When equipped with these supercommutative coordinates

pim (2,6) = () 1= (2,69 = (@), 0%, €, €)

the space RP! is the prototypical supermanifold or Z,-manifold (with global coordinates) just
as RP is the prototypical smooth manifold (with global coordinates). Due to their parity and
anticommutativity, the odd coordinates £* can of course not take any real value. Therefore
they are often referred to as formal parameters and functions like for instance sin(£*) do not
make sense. Moreover, from (1.2.3) it follows that a monomial like £1£%¢? coincides up to a sign
with the same monomial £'¢2£* in which the parameters are naturally ordered, and that the &2
are nilpotent so that a monomial like £'¢2¢! vanishes just as does every monomial £ . . . £%+1
with more than ¢ factors. Therefore a superfunction f of the supermanifold R?/¢ must be of
the form

F@, &) = fo@) + D fa@) + D fara(@)EME2 4+ frog(z)€ - ¢ (1.2.4)

a1<a2

=2 D fal@)E®, (1.2.5)

k=0 |a|=Fk

where « is a multi-index and f, € C*(U) for some open subset U € Open(R?) of RP. As these
superfunctions or Zy-functions are polynomials in the &', ... &7 with coefficients in C>*(U), we
denote the algebra of these functions by C®(U)[¢!,...,£%. Replacing U by any of its open
subsets V' € Open(U) we obtain a sheaf
o 1 0pen(U) 2 V= Cop (V) = C*(V)[E}, ... €]

of supercommutative associative unital real algebras over U, with obvious restrictions and
gluings. The pair

urlt = (U,C) (1.2.6)

» ¥plg

made of the topological space U and the sheaf of supercommutative rings C;loq is a super ringed
space which we will call a superdomain or Z,-domain.

1.2.2 Smooth manifolds

Usually we define a smooth n-dimensional manifold M as a set which comes equipped with
an (equivalence class of compatible) atlas(es) whose chart maps are valued in R™ and whose
coordinate transformations are smooth maps. Then the commutative associative unital real
algebra C*>°(M) of global functions of M allows us to construct a function sheaf C* that takes
open sets U in M and sends them to the corresponding commutative algebra C>*(U). As
algebras are in particular rings the pair (M, C*) is a ringed space, i.e. a topological space
together with a sheaf of rings on it.

It is well known that the map
M >z — ker(eval,) :=={f € C*(M) : f(z) =0} € Spm(C>(M))

that sends every point « of M to the corresponding maximal ideal ker(eval,) in the maximal
spectrum Spm(C*(M)) of C>(M) is a 1:1 correspondence. Hence the points of M ‘are’ the



maximal ideals of C°°(M). Similarly, in Algebraic Geometry the points of an affine variety
or affine scheme are the maximal or prime ideals of the global function ring of this variety or
scheme. Hence it is crucial to also highlight the maximal ideals of the ringed space (M,C>).
More precisely, for every point z in M the stalk C2° at x of the sheaf C> — the algebra of germs
at x of local functions — is known to have a unique maximal ideal m, given by

my = {[fl.: f(z) =0} CC7 (1.2.7)

This means that (M, C*) is a locally ringed space (LRS), i.e. a ringed space where all stalks
are local rings. In particular, the trivial smooth n-dimensional manifold R™ with its sheaf of
smooth functions Cg5 is a LRS. Since M is locally isomorphic to R", the LRS (M, C*) and
the LRS (R", Cg%) are locally isomorphic as well. This motivates the definition of the category
of LRS that are locally isomorphic as LRS to the LRS (R™, Cg%). It can be shown that this
category is equivalent to the category of smooth n-dimensional manifolds. Thus we have two
equivalent ways to define manifolds — atlases and LRS-s.

Because the atlas definition of a manifold is strongly based on the concept of point x ~
(x',...,2") of a manifold and since supermanifolds do not have a proper notion of point (z, &)
as the &-s are not proper coordinates, we will define smooth supermanifolds of dimension p|q as
locally super ringed spaces (LSRS) that are locally isomorphic as LSRS to the LSRS (R, C;ﬁ]).
Therefore, we start investigating LSRS-s and their (iso)morphisms.

1.2.3 Smooth supermanifolds

Having already mentioned super ringed spaces we now provide a concise definition.

Definition 1.2.1. A super ringed space (SRS) is a pair (M, O) consisting of a topological
space M and a sheaf O of supercommutative associative unital algebras over R. If additionally,
for every x € M the stalk O, of O at z has a unique homogeneous maximal ideal we say that
(M, O) is a locally super ringed space (LSRS).

Let us recall the concept of a homogenous ideal.

Definition 1.2.2. If R = Ry ® R; is a Zs-graded ring then an ideal I C R is said to be
homogeneous if it is compatible with the grading in the sense that I = (I N Ry) & (I N Ry).

Thus, as said above, every superdomain U?1¥ = (U, Cyr) (U € Open(RP)) is a SRS. Further-
more, it can be shown that for every x € U the stalk C of C at x has a unique maximal

plg,x plq
ideal given by
me = {[fla : folz) =0} CCp, (1.2.8)

(see [14], page 42; see also (1.2.4) and (1.2.7)). As m, is obviously homogeneous, every super-
domain U”1? is a LSRS. This result suggests using 4?9 as prototypical supermanifold that all
supermanifolds are modelled onto, analogously to differentiable manifolds that are modelled on
the LRS (R", Cg%), see paragraph 1.2.2. For this, we need to define morphisms between locally
super ringed spaces. Since morphisms in all categories preserve the data needed to define the
structure of the category’s objects, we get the

Definition 1.2.3. A morphism ® = (¢, ¢*) between two (locally) super ringed spaces (M, Oy;)
and (N, Oy) consists of

e a continuous map ¢ : M — N and



e a family ¢* = {¢}, : V € Open(N)} of morphisms ¢}, : Onx(V) — On(¢~1(V)) of
Zs-graded unital R-algebras such that the following diagram (involving the restriction
morphisms py;; and 7y, of the sheaves Oy and Oy respectively) commutes

¢y On(V) —— Ou(o7'(V))

Sy : On(W) —— On(¢7H(W))

and, in the case of locally super ringed spaces, such that for every m € M the induced
algebra morphism

¢in 10N,¢(m) — OM,m
[9]om) — [OV 9 Im

verifies ¢}, (Mn p(m)) C Mazm.
Now we are ready to define supermanifolds.

Definition 1.2.4. A smooth supermanifold or Zs-manifold of dimension pl|q is a super ringed
space M = (M, Oy;), where M is a second countable Hausdorff topological space, such that
for every point m € M there exist open subsets m € U C M and UP C RP as well as an
isomorphism ® = (¢, ¢*) of super ringed spaces between the SRS (U, OM|U) and the LSRS

(U, ]‘j“;). The prototypical supermanifolds (U?, C;’l‘;) are called Z,-domains.

Remark 1.2.5. Examining the isomorphism ¢ : (U, (’)M|U) — (U?, Cpy,) from Definition 1.2.4
it becomes clear that for every m € M the induced map ¢}, : C;fq s(m) O, must be an
isomorphism of algebras. Since C;“Z, $(m) CONtAINS a unique homogeneous maximal ideal the same

must hold for Oyy,,, which means that any supermanifold M = (M, Oy) is a LSRS.

Example 1.2.6. Consider a smooth manifold M of dimension n and its tangent bundle T'M —
M. We turn the total space T'M into the supermanifold TM[1], where [1] represents a parity
shift of the fibre coordinates, i.e. we decide to see them as odd parameters and thereby create
a Zo-grading on T'M|1]. Letting U C M be a trivialization domain of 7'M and denoting the
sheaf of functions on T'M[1] by Oppp) we get

OTM[I](U) = {Z Z fa1---a;c (.ﬁE) gal T fak}a

k=0 a1<---<ag

where (£1,...,&") are the odd fibre coordinates, (x!, ..., z") are the even base coordinates and
far-a, € C®(U). On the other hand, the differential forms on U are given by

QU) = (U, /\T*M)—{i D Waga (1) d A Ada Y

k=0 a1<---<ag

where (dzt, ..., dz™) is the local frame of T*M and w, ..., € C*(U). Since the wedge product
between these basis elements behaves similarly as the product between the odd parameters we
can identify the two function spaces above and we get that (M, ) = T M[1] is a supermanifold.
More generally, any vector bundle £ — M over M of rank k£ can be equipped with a parity
shift in the fibre coordinates and can then be seen as a supermanifold of dimension n|k. It can
even be shown that any supermanifold M = (M, Oy,) is isomorphic to E[1] = (M, T'(AE*)) for
some vector bundle £ — M. However, this identification is not canonical and the categories of
supermanifolds and vector bundles do not coincide, which will become clear during the study
of morphisms between supermanifolds.



Consider now the Zs-domain (RP, C;ﬁ]) and for every open subset U C RP define a mapping
v : Gy (U) — C*(U) that sends a superfunction given by

@, €)= fol@) + D fa@)€ + Y faraa(@)EE 4+ frog(2)E" - &0

a1 <a2
to the function fy € C*°(U). Clearly, ey is a surjective unital algebra morphism. Denoting the
kernel of ey by J(U) we get the following short exact sequence of algebras

0= JU) 5 CU) 2 c=(U) — 0.

pla
Proposition 1.2.7. A function f € C3, (U) is invertible if and only if ey(f) = fo € C*(U) is
invertible.

Proof. If f € C°(U) has inverse f~! then the inverse of fy = ey (f) is given by

plg
fot= (o)) =cu(f)

since €y is a unital algebra morphism.

Conversely, assume fo € C*(U) has inverse f, *. Since f is invertible if and only if f,'f is
invertible we focus on f;'f = 1 +t, where ¢ consists of terms that involve at least one of the
odd parameters. Then ¢7™' = 0 and therefore the inverse of 1+ ¢ is given by 1+ > 7 _ t™. [

Let now U C R? be an open subset. Since a function f € C*(U) is invertible if and only
if f(x) # 0 for all x € U, the value of f at x can be characterized as the unique real number
k such that f — k is not invertible in any neighbourhood of xz. Note that a superfunction
g € ;’fq(U ) cannot be evaluated at a point because the coordinates in RPI? involve formal
parameter. However, in view of Proposition 1.2.7, for every x € U there exists a unique real
number [ such that g — [ is not invertible in any neighborhood of x. As this is a local property
and all supermanifolds are locally isomorphic to a Zs-domain the same holds for superfunctions
on an arbitrary supermanifold. So if M = (M, Oy,) is a supermanifold and V' C M an open
subset then for every s € Oy (V) and for every x € V' there exists a unique real number m such
that s —m is not invertible in any neighborhood of x. Now, we can define an algebra morphism
ey on Oy (V) by setting ey (s)(z) := m. Denoting its kernel by J (V') and its image by F(V)
we obtain the following short exact sequence of algebras

0o JV) X% 0u(V) 2 FV) = 0.

In fact the kernel Jy; : V +— J (V) is a subsheaf of Oy;. The presheaf F is locally isomorphic
to Cgy and is thus locally a sheaf. Hence F generates a sheaf § which is locally isomorphic to
Cg> and thus implements a p-dimensional smooth manifold structure on M such that C{; =
see subsection 1.2.2. Thus, there exists a short exact sequence

0= Ju = Oy 5 C =0

of sheaves of supercommutative associative real algebras over M and the projection € of the
function sheaf Oy, of the supermanifold M onto the function sheaf C; of the underlying smooth
manifold M can be viewed as an embedding of the base manifold M into the supermanifold

M.

This investigation of the function sheaf of a supermanifold shows, firstly, that a superman-
ifold structure (M, Oy;) always induces a smooth manifold structure on its base topological
space M and secondly, that M can be embedded into M, so that supermanifolds can be seen
as smooth manifolds with a cloud of odd “stuft” around them.



Let us finally mention that in the next subsection we will further explain the role of the
ideals

JV)={s€Oy(V):ey(s) =0} COy(V)

above (V' € Open(M)) and of the unique homogeneous maximal ideals m,, C O,, (m € M). In
addition, for upcoming applications, we note that, if we choose a supercoordinate chart (z, &)
centered at m it follows from (1.2.8) that m,, is given by

Wy = {[s] 2 £(s)(m) =0}y = {[flo : fl2, ) =0@)+ D > fura @) "} C O,

k=1 a1<--<ay

where 0(z) are terms of degree at least 1 in .

1.3 Morphisms of supermanifolds

1.3.1 Continuity

A morphism between two supermanifolds M = (M, Oy) and N' = (N, Oy) (of dimension
plq and r|s respectively) is a morphism ® = (¢, ¢*) of the corresponding locally super ringed
spaces.

We want to investigate continuity properties of such morphisms and start by observing that
the projection e introduced above commutes with ¢*. We denote the projection of Oy onto
the sheaf C¥ of smooth functions of N by ey and choose open subsets V' € Open(/N) and
U= ¢ (V) € Open(M). Then, if there exist supercoordinates (y, n) on V and (z, £) on U,
we have on the one hand

b1 (e () = 63 (fo) = foo 8], € CRU) (13.1)

for every f € On(V). The first equality in (1.3.1) follows from the decomposition of f as in
(1.2.4) and the second one from the fact that the pullback of a classical function f, on V' by
the map ¢ : M — N is given by fyo (b‘U. On the other hand, applying the algebra morphism

¢} to f, decomposed as in (1.2.5), yields

Ou (flym) = v (D D faly)n™) =Y > S (fal®))dy () - - 67 (n°)

k=0 |a|=k k=0 |a|=k

and since ¢}, respects parities ¢}, (n®) is odd for all @ € {1, ..., s} and we get that ¢} (f(y, 1))
is equal to the sum of ¢}, (fo(y)) and terms that include at least one of the odd parameters
€', .., &9, Therefore,

enu (@3(1) = 6 (fo) = foo ], € CR V),

which shows in conjunction with (1.3.1) that the following diagram commutes

On(V) —2 0y (U)

léN,v lEA{,U

B o
CY (V) —— C(U).

This result can also be proven in a coordinate-free manner (see [14], p. 46) and entails in
particular that elements g € Jy (V) in the kernel of ey verify

emu(dv(9)) = ov(env(g)) = 0.



Since ¢} (g1 - g2) = o3 (91) - ¢} (ga2) this does not only imply ¢3 (Tn(V)) C Ju(U) but also
oy (TN (V) € T (U) (1.3.2)

for every k € {0, ..., s}. Passing from superfunctions in O (V) to germs of superfunctions in
On ¢(z) for some x € M, (1.3.2) implies

which means in particular that the requirement concerning the preservation of the unique
maximal ideal in Definition 1.2.3 is redundant when defining morphisms between Zs-manifolds.
Focusing on the powers of the ideal Jn (V') we get a decreasing sequence of ideals

ON(V)=TIy(V)2In(V) 2 Tx(V) 2 - D2 IR(V) 2 IH(V) = {0}. (1.3.4)

Since the powers of 7y are sheaves, a section in 7, ]%H(V) vanishes if its restrictions to a cover
of coordinate domains vanish. Hence assume that on W C V' we have coordinates (y, 7). While
On (W) contains all superfunctions

f(ya +Zfa 77 + Z falaz al a2 "+f1~-8(y)771"'7787

a1<az

the elements of Jy (W) contain at least one odd parameter in each of their terms. Similarly, the
elements of J2(W) contain at least two odd parameters in each of their terms and the elements
of J%(W) only contain a term in all of the parameters n', ..., n*. Since any combination of s+ 1
parameters must contain two copies of the same parameter it follows that J5t' (W) = {0} and
that J5(V) = {0} . We interpret the sequence (1.3.4) as a sequence of smaller and smaller
neighborhoods of 0 € On (V). This motivates the definition of the J-adic topology on Oy (V)
by means of the basis
{g+TX(V) : ge On(V),0< k < s}.

Analogously, Oy (U) is equipped with the J-adic topology defined by the basis
{f+T%(U) : feOuU),0<k<q}.

Hence, ¢}, : On(V) — O (U) is a map between two topological spaces and we can ask whether
it is continuous. We claim that

S+ Tu(U)) = U (9+In(V)) (1.3.5)

gedy  (f+Tk(U))

for any element f+ 7§ (U) in the basis of the J-adic topology of Oy (U). Since the right-hand
side of (1.3.5) is open as union of open sets the claim asserts that ¢}, is continuous with respect
to the J-adic topology. It is clear that any element g € ¢, ' (f + J¥&(U)) is included in the
union on the right-hand side of (1.3.5) as this union consists of neighborhoods of these very
elements. To show the other inclusion we apply ¢}, to an arbitrary neighborhood g + J& (V)
of the union and obtain ¢}, (g) + @i (Jx(V)) since ¢}, is an algebra morphism. While the first
term ¢} (g) is contained in f + J% (U) by the way g was chosen, Equation (1.3.2) ensures that
the second term verifies ¢}, (J&(V)) C Jx (U). Taking into account that Ji (U) is an ideal we
can deduce that ¢}, (g) + ¢} (T&(V)) is a subset of f + J&(U), which concludes the proof of
(1.3.5).

It should be mentioned that in a similar fashion (1.3.3) can be used to endow O), and
On,¢(z) for every x € M with a topology called m-adic topology and it can be shown that the
map ¢* s continuous with respect to the m-adic topology.

Furthermore, the continuous map ¢ between the smooth manifolds M and N can be proven
to be smooth by showing that its components ¢' = 4’0 ¢ defined in a neighborhood of any point
x € M are smooth functions.



1.3.2 Fundamental theorem of supermorphisms

Following this discussion of continuity properties of morphisms between supermanifolds we
examine the defining elements of such morphisms, which leads us to the fundamental theorem
of supermorphisms. For this, let

= (¢, ¢) : M = (M, Opr) = V' = (V, C22)

be a morphism between a supermanifold M of dimension p|q and a Z,-domain V"I of dimension
r|s, the latter being equipped with the global coordinate system (y, 7). Since smooth functions
of the even coordinates 3' are even and the n® are odd it is possible to assign a canonical
parity to each term of an arbitrary superfunction f € C7, (V). In particular, Y€ Cr(V)o and
e’
that

(V)1 and since ¢* respects parities we observe, denoting ¢yy* by s* and ¢yn by o,
s' € Oy(M)g, forie{1,...,r},
o € On(M), fora € {1,...,s}.

Furthermore, applying the projection map € to the s’ yields
es' =ed'y' = ¢'ey' = ¢y =y o =¢' € C¥(M),
which implies
(es',...,es") (M) C V. (1.3.8)
These pullbacks of the coordinates in the superdomain actually completely determine the mor-

phism & as stated by the following theorem.

Theorem 1.3.1 (Fundamental theorem of supermorphisms). Being given a supermanifold
M = (M, Oy), a superdomain V'* = (V, ") with coordinates (y, 1) and elements

s 8 o 0% € Oy(M)
that verify (1.3.6), (1.3.7) and (1.3.8) then there exists a unique morphism of supermanifolds
= (¢, ¢") : M = V',

such that ‘ ‘
s' = o1y’ and o = opn”.

While we do not provide a rigorous proof for Theorem 1.3.1 (see [14], page 51), we explain
the idea behind the construction of the morphism & after making some useful observations.

Based on the relation

Wy =yt o =y (P(x)) = y'(2) (1.3.9)

for a morphism v between classical smooth manifolds with local coordinates z = (z!, ..., 2™)
respectively y = (y!, ..., y") and adopting the notation y* = y*(x), common in Physics, we decide
to sometimes omit the pullback in expressions like (1.3.9) and in similar ones for morphisms
between smooth supermanifolds. So, for instance, if ® = (¢, ¢*) : RPI® — R"* is a morphism
between superdomains endowed with coordinates (x, &) respectively (y, ) then we can write

yi - gb* f= Z ya1a2 goqfOQ e (1310)

a1 <o

0" = ¢ Zna JE D U s (T)EENEN 4

a1<ag<as
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Remark 1.3.2. In example 1.2.6 we discovered that any Zs-manifold can be identified with
some vector bundle and vice versa. However, we also mentioned that the categories of super-
manifolds and vector bundles do not coincide, which we can justify by the fact that the former
one has much more morphisms. Indeed, any smooth supermanifold is locally isomorphic to
an appropriate Zs-domain and thus any supermorphism locally reads as in (1.3.10), whereas
a morphism between two vector bundles equipped with local coordinates (z, £) and (y, n) is
locally given by

(@)
?

Example 1.3.3. Consider a morphism ® = (¢, ¢*) between supermanifolds that locally reads

as
y=x + £ (1.3.11)
nl — 51
7]2 — 52 ]

Using this morphism we want to pull back a superfunction f in the variables (y, n) to a
superfunction in the variables (z, £). If f is given by f(y, n) = yn' then

¢ f = (Y (¢ n') = (z + ') =z
clearly is a superfunction in (z, ). However, if f(y, n) = siny then the expression
¢"f = ¢"(siny) = sin(z + £'¢)

is not a superfunction since for this we need it to be a smooth function in x multiplied by a
polynomial in &' and £€2. Recalling that the Taylor series of sin is given by

=1
sin(z + h) = Zk_
k=0

for any z, h € R and taking into account that in a superfunction any term in which appear two
or more copies of the same odd parameter vanishes it seems reasonable to define

sin(x + £'¢%) = sinz + (cos 1)¢'¢2.

This process is called formal Taylor expansion and allows us thanks to nilpotency of odd
parameters to transform classical functions into superfunctions.

Remark 1.3.4. In paragraph 1.2.3 we established for an arbitrary Zy-manifold M = (M, Oyy)
the projection ¢ : Oy — C3; and thus an embedding M — M. However, there does not
exist a canonical projection M — M, i.e. a canonical embedding C33(U) — Oy (U) for any
U € Open(M). Even if U is a coordinate domain and Oy (U) = C3 (U), the embedding is
not coordinate-independent. Indeed, the supercoordinate transformation (1.3.11) induces in
the base the standard coordinate transformation y = x and the classical function sinz = siny
could be associated with the superfunctions sinz or siny = sinx + (cos z)£'¢? . However, there
is a non-canonical embedding of the sheaf C5} into the sheaf O);, as stated by the Batchelor-

Gawedzki theorem.
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Now we construct a morphism ® = (¢, ¢*) : M = (M, Oy;) — V'l = (V, C3.) on the basis
of some elements s',...,s", !, ....,n% € Oy (M) which satisfy the conditions of Theorem 1.3.1
thus capturing the main idea of the theorem’s proof. On the one hand, the map ¢ : M — V
is defined by ¢ := (es!,...,es") € C>°(M, V). On the other hand, ¢* should be a morphism of
Zo-graded unital R-algebras, so applying it to an arbitrary superfunction must yield

¢’ (Z fa(y)n"> =) (fa)) (@)™ - (O )

Furthermore, we have to set ¢*n® := ¢ for all a € {1,...,s} to fulfill the assertion of the
theorem and thus focus on the factors ¢*(f,(y)), which we define to mean

¢*(fa(y)) = f@(¢*y) = fa(¢*y1; ’¢*yr> = fOt(Sl’ R ST) )

setting ¢*y’' := s' for i € {1,...,r} for the same reason as above. Each s’ is assumed to be
even so if for the sake of simplicity we take M = RPI? with coordinates (z, &) we can write
s' = sh(x) + n' for some smooth functions s, and some nilpotent elements n' featuring an
even number of the odd parameters &1, ..., €% in each of their terms. Applying formal Taylor
expansion, which has been introduced in Example 1.3.3 and can also be used in the case of

several variables based on the Taylor series for functions of several variables, we finally set

falisa(o) +1) = 3 5500 £} sole)n’.
B

where the sum is finite due to nilpotency. Therefore, we finally obtain

¢’ (Z fa(y)n") => > %(foa)(s()(x))nﬁa“
e’ a B ’

and ¢* defined in this way is an algebra morphism that respects parities as can easily be
checked. Furthermore it can be shown that it commutes with the restriction maps and that
any two morphisms satisfying the conditions of Theorem 1.3.1 must coincide and thus our
definition of ¢ and ¢* provides the unique supermorphism whose existence is stated in the
fundamental theorem of supermorphisms.

1.4 Differential calculus on supermanifolds

1.4.1 Sheaves versus global sections

Even though differential geometry is sheaf-theoretic often it is not necessary to use sheaf theory
in order to deal with problems in this domain because global sections and morphisms between
them encode all necessary information and are typically easier to work with than sheaves and
sheaf morphisms. For instance, let M be a smooth manifold and denote by Q(M) the globally
defined differential forms on M, i.e. the global sections of the exterior bundle of M. Adding
the usual restriction and gluing we can reconstruct the sheaf (M, Q) of differential forms.
Moreover, in this case the reconstruction of the sheaf morphisms from the morphisms between
global sections works as follows. Any local operator 7 : Q(M) — Q(M) can be restricted to an
open subset U € Open(M) thanks to the existence of bump functions. More precisely, for every
point p € U we are able to choose a bump function v that is equal to 1 in a neighbourhood of
p and vanishes in a neighbourhood of the complement of U in order to define the restriction of
7 to U by setting for all wy € Q(U)

71, @) () = 7w (p)
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Then the restriction of 7 verifies for all w € Q(M)

Tl w],) =T,

and defining 7| analogously for some open set V' C U we obtain the following commutative
diagram, which means that from 7 we constructed the associated sheaf morphism.

T, QU) — QU

)
I lﬁ
)

T, QV) — QV

When working with real-analytic or holomorphic functions we cannot resort to partitions
of unity as they do not exist and consequently sheaf theory is indispensable in these cases.

The definition of partitions of unity can be adapted to Z,-manifolds and their existence can
be proven. Therefore, in supergeometry it is sometimes possible to work with global sections
rather than using sheaves similarly as in standard differential geometry. Even though sheaves
are in many cases indispensable we can observe that the existence of partitions of unity enables
in certain cases the reconstruction of a sheaf morphism from the corresponding morphism
between global sections. A result that illustrates this observation is Theorem 9 in [10] which
in particular asserts that for every pair of supermanifolds M = (M, Oy) and N = (N, Oy)
there exists a bijection

ﬁ : HomZ2_Man(./\/l, N) 50 = (qb, qb*) — ¢>‘]<V S HomZQ_Alg((’)N(N), OM(M>) .

1.4.2 Super tangent bundle

In differential geometry a vector field X € I'(T'M) on a smooth manifold M assigns to every
point m € M a tangent vector X,, € T,,M C T'M . Since the coordinates on a supermanifold
involve formal parameters there is no good concept of a point in supergeometry, which implies
that the aforementioned definition of vector fields on standard manifolds cannot simply be
transferred to supermanifolds. However, it is well known that the space of vector fields on M is
isomorphic to the space of derivations of smooth funtions on M. Thus, for any U € Open(M)
we can set

TMU) :=T(U, TM) = Der C*(U) (1.4.1)

and note that TM(U) is a real vector space, a C>°(U)-module as well as a Lie algebra over
R. This identification of vector fields with derivations enables us to define Zs-vector fields in
accordance with the definition from standard differential geometry, adapting it slightly in terms
of parity.

From now on let M = (M, O) be a supermanifold of dimension p|¢ and U € Open(M) an
open set in the underlying base manifold. Analogously to (1.4.1) we set

TM(U) = ZQ Der O(U) = ZQ Del"o O(U) D ZQ Der1 O(U) s
whose meaning is clarified in the

Definition 1.4.1. A homogeneous superderivation X € Z, Derg O(U) of parity X € {0, 1} is
an R-linear map X : O(U); — O(U),, ¢, 1 € {0, 1}, that verifies the graded Leibniz rule

X(st) = (Xs)t+ (=1)%3s(Xt)

for all s, t € O(U) and where § denotes the parity of s.



13

Clearly both Z; Derg O(U) and Zy Der; O(U) are real vector spaces, which means that
TM(U) = ZyDer O(U) is a real super vector space. Moreover, T M(U) can be endowed with
a super O(U)-module structure and with a super Lie algebra structure, for more details see
[14], page 54.

Thanks to the existence of super bump functions in supergeometry, which are defined anal-
ogously as bump functions in differential geometry, it can be proven that any superderivation
X € TM(U) is a local operator and can be restricted to O(V') for any V' € Open(U) such that
the restriction X M verifies

X1, (s],,) = (Xs)],,

for all s € O(U). Then the assignment
TM :0pen(M) > U + ZyDer O(U) € ZsMod(O(U))

together with the restriction maps p¥ : ZyDer O(U) 3 X — X|,, € ZyDer O(V) defines a
presheaf and even a sheaf of Z,-modules over O and Z,-Lie algebras over R.

Definition 1.4.2. The sheaf T'M is referred to as tangent sheaf of the supermanifold M and
the elements in the O(M)-module TM(M) are called vector fields of M.

In order to establish the local form of super vector fields we first recall what is meant by a
supercoordinate chart with coordinates (x, £) around some point x € M. We thereby indicate
the existence of an open subset U € Open(M) containing x such that (U, O‘U), the restriction

of M to U, is isomorphic as super ringed space to the super domain (U, C;ﬁ]’U) where the open

subset of R? diffeomorphic to U € Open(M) is also denoted by U. This entails the following
isomorphism between Zs-algebras

O(V) = (V) =C*(V)[E', ... ¢"]

= “plg

for every V' € Open(U), which implies in particular that elements in O(V') can be viewed as
superfunctions of the form f(z, &) =) fa(2)£* for some f, € C*(V).

Now let (U, (z, £)) be a super coordinate chart. We define 0,s € ZsDery O(U) for i €
{1,..,p} and Oca € ZyDer; O(U) for a € {1, ...,q} by setting

Oy (Z fa('r)ga) = Z(axlfa(x))ga
Dga (Z fa(x>§a> = Zfa(x)a@ga

for all ) fo(x){* € O(U). Morevover, in order to complete the above definition we set
Deal® := 4% and illustrate what this means for 9¢.£* on the example

Dga (£7€") = (0gal”)E" — €"(Deal") = —£.

It can be shown (see [14], page 57) that 0,1, ..., Opr, O, ..., Oce form a basis of the O(U)-module
TM(U). Firstly, this result implies the existence of a unique decomposition of any X € TM(U)

into , .
X=) X0u+> X
=1 a=1

for some X% X% € O(U). Secondly, we obtain that TM is a locally free sheaf of super O-
modules over M, which in conjunction with the fact that there exists a 1-to-1 correspondence
between locally free sheaves of C*°-modules over a standard manifold M and vector bundles
over M motivates the
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Definition 1.4.3. [13] A super vector bundle over a supermanifold M = (M, O) is a locally
free sheaf of O-modules over M.

In particular, the tangent sheaf TM of M is a super vector bundle over M that we call
super tangent bundle of M .

1.4.3 Super tangent spaces

Starting again with the well-known corresponding concept in differential geometry we recall
that there exists an isomorphism between the tangent space T,, M to a standard manifold M
at one of its points m € M and the derivations at m of the stalk C:¥ given by

L:T,M>X,,— Ly, € Der,, C, Lx, :C? o [f] — (dnf)(Xn) € R.
The choice of the stalk C;° as source space of Ly, is based on the fact that d,, is a local
operator, so that d,, f only depends on f in an arbitrarily small neighbourhood of m.

Similarly, for a supermanifold M = (M, O) we have the

Definition 1.4.4. The super tangent space T,, M of M at m € M is given by the real super
vector space Zsy Der,, O,, of superderivations at m of the Zs-algebra O,,, which is defined in
terms of the vector spaces of homogeneous superderivations of parity 0 and 1:

ZQ Derm Om = ZQ Derm,g Om D Z2 Derm,l Om .

A homogeneous super tangent vector X, at m to M of parity X,, € {0, 1} is a homogeneous
superderivation of parity X,, at m of O,,, i.e. X,, is an R-linear map X,, : O,, — R verifying

Xon([s] - [t]) = Xn[s](£[1]) (m) + (=1)*(e[s]) (m) - X 1]

for all [s], [t] € O,, and where § denotes the parity of s, the map ¢ : O,,, — C% is induced by
the projection € : O — C* and the germ of s at m is denoted by [s].

Considering a point m € M and a neighborhood U of m we observe that any vector
field X € TM(U) induces a tangent vector X,, € T,,X, which is of the same parity if X
is homogeneous. Indeed, this tangent vector is given by

X,=evj,o0c0X

where ev,, : C2° — R is the evaluation morphism at m and € : O,, — C;¥ is as above.

Therefore, the basis (0,i, Oga) induces a basis (Oui , O¢am) of the super tangent space at
m. This implies in particular that 7}, M has the same dimension as M and that each super
tangent vector X, € T,,, M can be written uniquely as

X = Ep: X! i + Xq: X 11,0 m
i=1 a=1

for some X!, X € R.

In standard differential geometry the tangent map 7T,,f of a map f € C>(M, N) between
two smooth manifolds at a point m € M is a linear map between the tangent spaces 7, M and
T't(m)N, which are isomorphic to Der,, C7,,, and Der f(m) Cy Fom) respectively. It is given by

Tmf(Xm) = Xm o f:;z

for any tangent vector Xy, : C37,,, — R and where f7, : C¥ ;) — Cj7,,, denotes the pullback

by f.
Transferring this concept to super geometry we define super tangent maps as follows.
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Definition 1.4.5. The tangent map 7}, of a morphism ® = (¢, ¢*) : M — N between
supermanifolds at a point m € M is the super vector space morphism given by

T, : TmM — T¢(m)N
X Xip o g7,

where ¢* is the induced pullback morphism between stalks.

The tangent map of a supermorphism behaves similarly as the tangent map of a morphism
between smooth manifolds when it comes to composition of morphisms. Indeed, let & =
(¢, 0*) : M — N and ¥ = (¢, ¥*) : N — P be morphisms between supermanifolds and
consider a point m € M. The tangent map 7}, P acts on a tangent vector in 7}, M by composing
it with the pullback between stalks ¢* and similarly for Ty,,)¥. Since the tangent map of their
composite T, (¥ o @) acts on a tangent vector in 7,, M by composing it with ¢* o ¢)* and since
composition is associative we obtain

T, (W 0 ) = Ty ¥ 0 T,, .

If in differential geometry we have a map z = z(y), where y = y(x), then z also depends on z
and for the partial derivative with respect to z° we obtain

Oyiz = Zayjz O,y = Z&ﬂyj Oyiz .
J J

Now consider a morphism of supermanifolds ® = (¢, ¢*) : (M, O) — (N, R) and assume
that V' € Open(N) is a supercoordinate domain with coordinates v = (y, ) such that U C
¢~'(V) € Open(M) is a supercoordinate domain with coordinates u = (x, ). Picking an
element t € R(V) and calculating the partial derivative of its pullback ¢*t € O(U) with
respect to it can be verified that

0 (07t) =D 0,a(¢"v®) 6" (0,01) | (1.4.2)

which coincides with the corresponding result in differential geometry in view of the convention
to omit pullbacks.

Next, we would like to investigate how to represent the tangent map 7, ® : T, M —=T ;)N
by means of a matrix. Here, ® is a morphism between the Z,-manifolds M and N of dimension
plg and r|s respectively and we consider supercoordinate charts around m € M and around
¢(m) € N with coordinates u = (z, £) and v = (y, n) respectively. These supercoordinates
induce the bases

8NA7m == (8xi7m, 8§a7m) and 6VB7¢(m) = (8yj7¢(m), 8nb7¢(m))

of T, M and T,y and @ is locally given by y = y(x, &) and n = n(z, £). It is easy to check
that the matrix of 7;,,® in the bases 0,4 ,, and 0,5 4m) is as expected the (r + s) x (p + q)

matrix
Ou, Oeyl (e(a ym) 0 )
O = m m| = (5% , 1.4.3
o (agcmm oen| 0 =(@m)m) (143)

£(0ey)(m) = &(an)(m) =0,

where

as € preserves the parity.
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We consider now a second morphism ¥ : N'— P and a coordinate chart around v (¢(m))
with coordinates w = (z, ). Since
T (U 0 ®) = Ty ¥ 0 T ®

and since the composite of super vector space morphisms is represented by the product of their
representative matrices, we have

Guw|m = ,,w|¢(m) . 8M1/|m.
It is natural to ask whether the same result holds for the Jacobian matrices, i.e. whether
Oyw = Oyw - Oy .
From (1.4.2) it follows that
(Buw)§ = 9,40

= Z 8MA I/Ba,/BwC
B
= Z :l:al,chauA VB
B
= Z i(avw)g(auy)g ;
B
so that
Oyw # Oyw - O . (1.4.4)
However, the hindering signs can be included in the Jacobian matrix:

Definition 1.4.6. The modified super Jacobian matrix of a supermorphism & between Z,-
domains UP17 and V'* given by y = y(z, &) and n = n(z, ) is defined as the (r + s) x (p + q)

matrix 5 5
_ =Y Oy
Zo Jac & = .
’ (@m De )

With this definition the result (1.4.4) becomes true, i.e. the modified Jacobian matrix of
the composite of two supermorphisms is the product of the two modified Jacobian matrices:

Zo Jac (Vo @) =7y Jac W - Zy Jac © . (1.4.5)

Note that the representative matrix of the tangent map in the induced bases of the tangent
spaces is given by
Tn® = 0y = Zy Jac @), (1.4.6)

as the difference between the two matrices disappears in the projection onto the base.

1.4.4 Super differential forms
The C*(M)-module of differential 1-forms on a smooth manifold M is given by

Q!(M) = T(T* M) = Homgw (an) (T(TM), C=(M)) .
We also set Q°(M) = C>°(M) and define the linear map

d: QM) — QY (M)
f=df,
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where df associates each X € I'(T'M) with the Lie derivative of f in the direction of X. The
map d can be uniquely extended to a degree 1 linear map on the differential k-forms on M
(k > 1) that verifies the graded derivation property with respect to the wedge product of
differential forms and the equation d? = 0.

This suggests defining the super differential 1-forms on a supermanifold M = (M, O) as
UM = Homop(TM, O) .

It should be noted that even though TM and O are sheaves #omo(TM, O) is not made of
sheaf morphisms but is itself a sheaf that associates to every U € Open(M) the super O(U)-
module Q' M(U) that consists of sheaf morphisms as detailed in the following definition.

Definition 1.4.7. A Z,-differential 1-form w € Q' M(U) over U is an O(U)-linear map
w:TM(U) — OU)

along with its O(V)-linear restrictions w|,, TM(V) — O(V) for every V' € Open(U) that

verify w(X)|, =w| (X] ) for all X € TM(U).

Furthermore, we set QM := O and define the morphism of sheaves of super @-modules
d: QM — Q' M as the family of maps

v QOMU) — QPM(U)
s+ dys
where U € Open(M) and the differential of a section s € O(U) of parity § is given by
(dys)(X) == (-1)%°X s

for all X € TM(U) of parity X . It is easily checked that the maps dy are O(U)-linear,
commute with restrictions and preserve the parities, so that they define a morphism of sheaves
of O-modules of parity zero.

In search of the coordinate expression of a Z,-differential 1-form w € Q' M(U) for some
super coordinate chart U € Open(M) with coordinates p = (x, £) we consider the differential
1-forms du?, or more explicitly dz’ and d¢?, induced by the local supercoordinate functions
(for the sake of simplicity we write d instead of di;). They can be shown to form a basis for
Q' M(U) (see [14], page 66), which means that every w € Q' M(U) can uniquely be written as

w= Z da'wi(x, £) + Z A€ w, (z (1.4.7)

for some w;, w, € O(U). Moreover, the existence of such a basis implies that Q' M is a locally
free sheaf of super O-modules, which means in view of Definition 1.4.3 that Q' M is a Zs-vector

bundle over M of rank p|q and taking into account its relation with T M we often denote this
vector bundle by T*M .

Example 1.4.8. Applying w, decomposed as in (1.4.7), to Og yields
w(Dev) Z da'w;(z, €)(Dg) Z A€ wq(z, €) ()
= Z )2 dat (O ) wi(, &) + Z WH)'ldfa(a&b)wa(fE» £)
= (—1) “wy(, €,

where the reason for the appearance of the signs (—1)“! and (—1)@+Y! is supercommutativity
and the fact that all w; must be of parity w, while all w, must be of parity @ + 1.
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A similar calculation leads to w(0,:) = w;(x, &), hence we can conclude that the sections
w;, w, € O(U) that appear in (1.4.7) are given by
wi(x &) = w(0y)
wa(:pa f) = (_1>ww(afa) :

It follows that dy can be decomposed as
dy = dr'0y + ) dE"0e = dptO,a.
% a A
Indeed if f = f(z, £) is a superfunction, we obtain

dyf = Zdw (du f)( wl+z 1)/ de*(dy f) (Dea )
_deaxzf+z fdga 1)/ 0eu

_ (Z dr'y + dgaaéa> f

Moving on to the definition of super differential 2-forms, or more generally super differential
k-forms for some k& > 0, we begin by formally extending the operator d : Q°M — Q' M to act
on a Zy-differential 1-form of the form df for some f € O(U) and making sure this yields 0 as
should be expected in view of the definition of the de Rham differential in standard differential
geometry. In the following equation the parity of an element is denoted by the same symbol as
the element itself and Deligne sign convention is used. More details on this convention and an
alternative will be discussed below. We compute

= Z dpt ® Oy (Z du® ® 8u3f)
A B
_ Z(—l)“A'“BduAduB ® Qa0 f
= Z (=1 dpPdp?y @ (1) 0,50,4) f
= — Z P AP dpt © 0,50,a f
= — Z —1)# '“BduAduB ® 0,40,5 f

=0.

The tensor product symbol ® is used to stress that du” is a map whose argument is a vector
field and 0,4 a map whose argument is a function. The Koszul sign (—1)“A"‘B appears on the
second line of the equation due to the commutation of d,4 and dpP and the fact that Oy is
of parity u4 and du® is of parity u? by definition. The commutation of 0,4 and 0,5 causes
the sign (—1)“A‘“B to appear since the basis elements 0,4 are super commutative as can easily
be checked. The basis elements du? however are chosen to be super anticommutative, which
is part of the Deligne sign convention mentioned above and leads to the apparition of the sign
—(—1)“A‘“B . Simplifying the resulting expression and interchanging the roles of A and B it
becomes clear that the super differential 2-form d(df) is equal to its opposite and hence must
be zero as required.
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Above we made use of the Deligne sign convention by letting d be even and letting the
Zo-differential 1-forms du? be Zs-anticommutative. It can be shown that this convention is
one of two possible settings in which the differential squares to 0. The alternative is called
Bernstein-Leites sign convention and involves defining d to be odd and the 1-forms du” to be
Zo-commutative.

To conclude this introduction to supergeometry we specify the local form of a general super
differential 2-form w € Q2 M (U) for some super coordinate chart U € Open(M) with coordinates

= (z, &), namely
w=Y dptdpPwap(p)
AB

=Y da'de’ fiy(a, ) + ) da'de gia(w, €) + Y dEdE har(, ),

i<j ia a<b

for some wap, fij, Gia, hav € O(U), and the local form of a general super differential k-form

w € QLM(U), ie.
w= Y (dz)*(d€) wap(z, &),

laf+|81=k
for some w,p € O(U) and where oy, ...,a, € {0, 1} and fy, ..., 5, € N. The fact that the same
differential of a formal parameter dé® can appear multiple times in the same term while the
square of any basis element dz® vanishes follows from the Zs-anticommutativity of the elements
du? .

It will prove important that the super anticommutivity of the differentials du” reads
dptdp® = — (=1 dpPdpt = (1) QP dpt

where the exponent in the last term is the sum of the products of the cohomological degrees of
dp® and du® and the parities of du” and du® respectively. More generally, the product ® (so
far we have omitted the symbol ®) of a super differential k-form w; € Q* M(U) and a super
differential I-form wy, € QM (U) satisfies

k-t @
Wy O wy = (_1) +w1w2w2 O wr,

where the exponent can be interpreted as the scalar product ((k, @), (I, @2)), so that — when
taking the integers k,! modulo 2 — we have an example of a Z3-commutative algebra, which
will be discussed in more detail in the next chapter. Using the Bernstein-Leites sign convention
we obtain

w @ wy = (—1)FEFEHR) ) © w; .
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Chapter 2

Introduction to higher supergeometry

Having given an overview of the most important concepts in supergeometry we now move on
to a more general setting, where the Z,-grading is replaced with a Z3-grading for an arbitrary
1 < n € N. Here Zj means Z;" = Zs X ... X Zy (n factors). More precisely, coordinates in
Z3-geometry may have the degree

(0, 0), (0, 1), (1,0) or (1, 1),
the degrees of the coordinates in Z3-geometry are given by
(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0) and (1, 1, 1)

and hence in Z-geometry coordinates can have 2" different degrees, each with n components
in Zso. If the sum of the components of a Z3}-degree equals 0 modulo 2 then the corresponding
coordinate is even and otherwise it is odd. The commutation rule for coordinates in Zj-geometry
generalizes the one in Zsy-geometry since the product of the parities is replaced by the scalar
product of the ZJ-degrees. For instance this means that if y and 7 are of degree (1, 0, 1) and
(0, 0, 1) respectively then we get
y-n=(=1){LOD000, o gy
This new scalar product commutation rule does not have the same properties as the sign rule
in classical supergeometry. Indeed, even coordinates may anticommute, odd coordinates may
commute and non-zero degree even parameters are not nilpotent, all of which can easily be
verified by means of the degrees in Z3-geometry.

2.1 Motivation

It is sufficient to study Z3-gradings with the above commutation rule since any sign rule for
any finite number m of coordinates has the form of a ZJ-scalar-product commutation rule for
some n < 2m (see [16], page 4). And it is necessary to study Z3-gradings since they appear
among others in Physics, Algebra and Geometry as illustrated by the following examples.

2.1.1 Physics

String theory does not only make use of classical supergeometry but also benefits from results
in Z73-geometry for n > 1. Furthermore, Z3-gradings can be found in parastatistical supersym-
metry. More precisely, in classical mechanics the distribution of particles over energy states is
described by the Maxwell-Boltzmann statistics. If quantum effects must be taken into account,
one uses the Bose-Einstein statistics and the Fermi-Dirac statistics when dealing with bosons
and fermions respectively. Parastatistics is one of several alternative statistics and leads to
paraparticles — parabosons and parafermions — and parastatistical supersymmetry.
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2.1.2 Algebra

A Z3-commutative algebra for n = 2 can be found when considering super differential forms
on a smooth supermanifold M = (M,O);). Indeed, using the Deligne sign convention the
commutation of w; € QFM(M) and wy € Q'M(M) is given by

Wy ® Wy = (_1)k~l+d)1@2w2 ® Wy = (_1)«]@’7@1),([’7&12»0.}2 ® w1,

where ¥ = k mod 2, I’ =1 mod 2 and thus (K, &), (I', @) € Z2.

Another example is the algebra H = R @ iR @ jR & kR of quaternions. The products of the
basis elements are defined by the relations

P=42=—1, —ji=ij=k

together with the fact that 1 is the multiplicative identity. Associativity can then be used to
obtain the remaining product rules

ijk=k=-1, —kj=jk=i, —ik=ki=j.

The basis elements {1, i, j, k} verify the scalar product commutation rule introduced above
when assigning them the following even Z3-degrees:

deg1:=(0,0,0), degi:=(0,1,1), degj:=(1,0,1), degk:=(1,1,0).
Therefore, if we denote by (Z3)., the purely even part of the group Z3, the algebra H is

(Z3) oy-graded and (Z3) .,-commutative in the sense of the scalar product commutation rule.

More generally, we can define the Clifford algebra €1, ,(R) of signature (p, ¢) over R (for
some natural numbers p and ¢ whose sum is denoted by n) as the associative unital R-algebra
generated by (eq, ..., e,) € (R™)™ modulo the relations

eie; = —eje; forall i # j
e2=1 fori<p
e? =—1 forj>p.

Then
n
0,0 = {3 5 mee
k=0 1<~ <y,
which is isomorphic as vector space to the exterior algebra AR™ but not as algebra since for

instance e? = +1 for all i € {1,...,n} while ¢; Ae; = 0 for all i € {1,...,n}. Defining the degree
of e; for every i € {1,...,n} as

dege; :=(0,...,0,1,0,...,0,1),

where the ones are in positions ¢ and n + 1 of the vector, we can see that 6[,,(R) becomes
a (Z5™) -commutative associative unital R-algebra. This generalizes the previous example
since the algebra H of quaternions is nothing more than the algebra “€ly3(R) .

2.1.3 Geometry

In geometry Z3-manifolds arise naturally as illustrated by the following example. We start with
a smooth supermanifold M of dimension p|q with supercoordinates (x, £), i.e. coordinates z
of parity 0 and formal parameters £ of parity 1. Since a basis of the dual gives coordinates
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on the original space, we denote the supercoordinates of the tangent bundle T M of M by
(z, &, dz, d£) . If we adopt the Bernstein-Leites sign convention, we consider d odd and use the
Zo-commutation rule. This leads to coordinates (z, £, dx, d§) of Zy-degrees (0,1,1,0) and to
a Zo-manifold structure on T'M whose function sheaf is over the coordinate domain U given
by

ﬁ-q‘p—i—q(U) = COO(CB7 df)[f, dﬂ?] :
On the other hand, if we use the Deligne sign convention, we consider d even and use the Z3-

commutation rule for the bidegree made of the cohomological degree modulo 2 and the parity.
This leads to coordinates (x, &, dz, d€) of Z3-degrees

((0,0),(0,1), (1,0), (1, 1))

and to a Z2-manifold structure on 7'M whose function sheaf is over U given by

;RQ#LP)(U) = Coo(x) [[d£7 £> dﬂ?]] )

where [d€, £, dx] represents formal power series in d¢, € and dz . Reasons for the use of formal
power series will be given below. Notice that the Z2-degrees carry richer information than the
corresponding Zy-degrees and that in the Z3-manifold we do not need consider the differential
d¢ of a parameter as a standard base variable as in the corresponding Zs,-manifold.

2.2 Smooth Zj-manifolds

We start by explaining why in the local representations of superfunctions in higher superge-
ometry there appear formal series in the parameters y := d§, € and 1 := dx. As mentioned
before non-zero degree even coordinates are not nilpotent in Z3-geometry. In the case of Z2-
coordinates as described above for instance we have

y2 — (_1)((1,1),(1,1))y2 — y27

which means that y is not nilpotent. Consider now the coordinate transformation given by

$/:$+y2 glzf
y =y n=n

and apply the formal Taylor expansion to express a function F' in 2’ as a function in the original
coordinates : ]
2 2
F@UZF@+y)=§:a@ﬁW@w“,
(03

where the pullback has been omitted. Since y is not nilpotent the sum on the right-hand side is
not necessarily finite and is therefore a power series in y. Combining this with the fact that the
pullback of a superfunction on the target space must be a superfunction on the source space
it becomes clear that superfunctions in higher geometry must be represented by power series.
It should be noted that these power series are formal and thus there is no need to question
whether they converge.

The most general form of a Z2-morphism can be found observing that & and 7 are nilpotent
and checking which degree corresponds to different powers of y and to different combinations
of the parameters. It is given by

= fo y27“ + Zgr 2r+1£7,’ 5/ _ fo’ 2r5+zgr 2r+1
y =Zf£“’ ) 2’"“+Zgr (@)y*én o —Zf" )y U+Zgr e
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Concerning notation we observe that the abelian group Z% has 2" elements, 2" ! of them are
even and the remaining 2" ! elements are odd. We order these 2" elements by first ordering the
2"~ even elements lexicographically and then ordering the 27! odd elements lexicographically.
For instance in the case of Z2 this standard ordering leads to

((0,0), (1,1),(0,1),(1,0)) -

Further we denote the i-th element of Z by ~; for i € {0, 1,...,2" — 1}. As explained above
a Z5-manifold can have supercoordinates of all Z3-degrees 7; . The standard base coordinates
r = (z',...,2P) € RP are all of degree 7o = (0, ..., 0) while the formal parameters are summarized
as & = (€1,...,€%) and if we denote by ¢; the number of parameters that have degree 7; then
q = (q1,---,qon—1) is a tuple of 2" — 1 natural numbers whose sum is q. Thus the sheaf of

superfunctions on a Z3-domain RPI? of dimension p| q is defined as
% (U) = CE ()€, .. 7]

for every U € Open(RP).

Similarly to super ringed spaces and supermanifolds we now define locally Z5-ringed spaces
and Zi-manifolds.

Definition 2.2.1. A Z3-ringed space is a pair (M, Oy) consisting of a topological space M
and a sheaf Oy of Zj-graded Zj-commutative (in the sense of the scalar product commutation
rule) associative unital R-algebras over M. If additionally, for every x € M , the stalk O, has
a unique homogeneous maximal ideal we say that (M, Oyy) is a locally Z3-ringed space.

Definition 2.2.2. A smooth Zj-manifold of dimension p|q is a locally Z3-ringed space M =
(M, Oypr) , where M is a second countable Hausdorff topological space, that is locally isomorphic

to the smooth Z2-domain RPIZ = (RP, ;‘Og) :

2.3 Fundamental results in higher supergeometry

Even though most results from supergeometry are also valid in higher supergeometry they often
require different or more subtle proofs, which will be illustrated in this section by means of two
important theorems. Furthermore it should be remarked that while the theory of supergeometry
originates from a model in Physics and thus contains some developments that are not entirely
precise (or even wrong), higher supergeometry has been designed carefully from scratch using
mathematical tools. The main difference between Z,-geometry and Zj-geometry can be found
in integration theory, which will be introduced in Chapter 3.

2.3.1 Invertibility of Zy-functions

pla
parameter-independent term e (f) = fy € C*(U) is invertible. The corresponding fundamental

result of Zj-geometry reads as follows.

In Proposition 1.2.7 we proved that a superfunction f € (U) is invertible if and only if its
Theorem 2.3.1. A Z%-function
fecyU)=cxU)g,....&

is invertible if and only if fo € C*(U), the term of f that does not contain any of the parameters
&, us invertible.
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Proof. Similarly to the proof of Proposition 1.2.7 it suffices to show that 1 — ¢ is invertible for
any element ¢ € Cgﬁ](U ) that only consists of terms that contain at least one of the parameters

£% . Since the proof of Proposition 1.2.7 relies on the fact that the parameters £ are nilpotent
and in ZY-geometry there exist parameters that are not nilpotent it has to be adapted in order
to hold in the Z3-context.

We claim that the inverse of 1 — ¢ is given by Y 2 ¢ € ;ﬁ](U ) and start by showing that
Syt is indeed an element of Co(U) . 1f T is given by

t= Z Z fa(x>§a = Z fa<x)§a )

k=1 |a|=k || >1
we have
Ztl = Z Z fal(x)gal Tt Z faz(x)gal
=0 =0 lag|>1 lag|>1
=3 N fa@) e fa (@) e
1=0 |o;|>1,Vi

=33 Y @ ful@) | €

where Fé € C*(U) since the sum over all a, ..., a; such that oy + ... + oy = f and |oy| > 1,Vi
is finite and f,, € C>(U) for every o, which in turn implies that Fz € C>°(U) since the sum

yi'o is finite. Moreover £ means that the powers £ of parameters have been regrouped
taking into account first the index a and then the index «;, which might change the sign of
some of the terms due to Zj-commutativity. To conclude the proof that %, t is the inverse

of 1 — ¢ we observe that

(1—t)itl:§:tl—it’=t0:1
=0 =0 =1

and analogously Y °, t'(1 — t) = 1. Hence, while in the super case nilpotency allowed us to
conclude, it is here the fact that we replaced polynomials with formal power series. O

2.3.2 Higher morphism theorem

In order to extend Theorem 1.3.1 to higher supergeometry we need to use the fact that Oy,
the structure sheaf of the source space M = (M, Oy) of the considered supermorphism,
is Hausdorff-complete. What this means and how it can be used to prove the fundamental
theorem of supermorphisms in Zj-geometry is discussed in the following.
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To show that the field of rational numbers Q is not complete we can resort to the sequence
(x,,) of rational numbers defined by

T 1
.lel, xn+1:?n+x_~

It can easily be verified that (z,) is a Cauchy sequence with respect to the standard norm on
Q given by the absolute value of the difference and that the limit x of (x,,), if it exists, must
satisfy 22 = 2, which leads to + = £v/2 ¢ Q. Therefore there exist Cauchy sequences of
rational numbers that do not converge in Q.

To show that the ring R[z| of polynomials in = with coefficients in R evaluated at x € [0, 1]
is not complete consider the sequence of polynomials (p,) given by

o =$3)"

k=0
Then (p,) is clearly a Cauchy sequence with respect to the norm || — ||o defined by
1p(2)[[ec = sup |p(z)]-

z€[0,1]

Since (p,) is a geometric series and |%| < 1 the limit of (p,) is (1 — £)~! & R[z], proving the
existence of Cauchy sequences in R[z| that do not converge in Rix].

Since rational functions are real analytic, the algebra R[z] of formal power series should be
complete. Likewise, for every U € Open(M), the model Zj-function algebra CJ; (U) should be
complete. However, we first need to equip it with a norm, or equivalently with a topology, and
define Cauchy sequences and convergence of sequences with respect to this norm in order to
allow for a notion of completeness on C;¢ (U) and thereby on the Zj-function algebra Op (U) .

o (U) =C>(U)[¢] by A and the kernel 7 (U) of the projection ey by Z , we consider
the Z-adic topology introduced in Section 1.3.1 by means of the basis
{p+TF :pc A keN}.

Definition 2.3.2. A sequence (a,)en C A is a Cauchy sequence if for every k € N there exists
I € N such that a, —a, € ZF for all r, s > [.

Denoting

Definition 2.3.3. A sequence (a,)nen € A converges to a € A if for every k € N there exists
| € N such that a,, —a € ZF for all n > [.

Now consider the decreasing sequence of ideals
ADIDI*°DI°D---
and take quotients of A to obtain
AJA — AJT + AJT? + AJT? + - - -, (2.3.1)

where A/Z represents the superfunctions that do not contain any formal parameters, A/Z?
represents the superfunctions consisting of terms with at most one formal parameter and the
arrows denote the natural projections. Then (2.3.1) is an inverse system and it can be shown
that its inverse limit is given by

lim A/Z" = A,
iy

which constitutes the definition of Hausdorff-completeness: the algebra A is Hausdorff-complete
with respect to the Z-adic topology. For more details see [16], page 13. We use without proof
the result that Hausdorff-completeness implies standard completeness, which allows us to make
use of the fact that every Cauchy sequence in A converges to a limit in A in the following proof
of the fundamental theorem of Z5-morphisms.
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Theorem 2.3.4. We consider a Z3-manifold M = (M, Oy), a Z3-domain Vs = (V, C)

rls
with coordinates (y, n) and Zy-functions

st .., s" ot 0% € Oyn(M)
that verify

deg(s") = deg(y"), foriec{l,...,r},
deg(c®) = deg(n®), forae{l,.., s}

and
(est,...,es" (M) C V.

Then there ezists a unique morphism of Zy-manifolds
D= (¢, ¢): M — V'l

such that
s'= oLy’ and o = ¢pn”.

Proof. To begin with we show how uniqueness of the algebra morphism
S+ CR(W) = Om (6™ (W))

for all W € Open(V) can be proved in the case of Zy-manifolds in order to highlight the
similarities and differences between both cases. If the required algebra morphism ¢, exists
then its value on a superfunction )  fo(y)n® € C. (W) must necessarily be given by

rls

b (Z fa(y)n“) =01 | DD fan® | =D i (falw)) ().

k=0 |a|=k k=0 |a|=k

The pullback ¢5,7 is ¢ by the requirements of the theorem and if f,(y) is a polynomial

N
2y’ =2 iy’

8 =0 |8|=t
then we necessarily have
N Na
Siv(faw) =i | DD ri” | =D D rileny)
1=0 |8|=l 1=0 |B]=l

with ¢j,y = s. Hence ¢y, , if it exists, is uniquely determined on polynomials in 1 with
coefficients in polynomials in y and in view of polynomial approximation (see [14], page 51) ¢}
is unique on all superfunctions in CJ; (W) .

Switching to Z5-geometry, we assume again that the required algebra morphism
Ow = C(W) = Ou(U),

where U = ¢! (W), exists for all W € Open(V) and show that it is uniquely determined on
an arbitrary Zj-function ) fo(y)n® € C(W). In this case the fact that ¢j, is an algebra

rls
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morphism cannot be used to bring it inside the sum since we are dealing with series. Therefore,
we adopt the following notation for the time being:

Py (Z fa(y)na> = ¢ Z Z falym® | =:a.

k=0 |a|=k

However, for any n € N we can apply ¢}, to the above Zj-function truncated at its (n + 1)-th
term to obtain

S [ DD falw)n™ | =D ot | D falyn™ | =D D dw(fal@))(dipn)®,  (2:32)

k=0 |o|=k lo|=k k=0 |o|=k

where the right-hand side is a section in Oy (U) and will be denoted by a,. The sequence
(an)nen € Op(U) is Cauchy, which can be seen by considering for r > s the difference

ar—as=) Y Gw(fa@)@m =D > div(faly))(@in)*

k=0 |a|=k k=0 |o|=k

=3 S G () (Sim)”

k=s+1|o|=k

Looking back on Equation (2.3.2) we note that >, _, fa(y)n® € J*(W), which implies due
to continuity of ¢y, that

S | D falyn™ ) = D2 div(fal))(@lym)* € THU).

laf=k |al=k

Since JH(U) C J*TY(U) for all k € {s +1,...,r} we have a, — a, € J*"(U), which can be
reformulated by saying that a, —as € JV(U) whenever r > s > N —1. As Oy(U) is complete
the Cauchy sequence (a,) has a unique limit in Oy (U), which we denote by

oo

lima, =) > diw(faly) (@)

k=0 |a|=k

But arguing similarly as above we have

a—an =y | DD faly™ | =D D dw(falv) (i)

k=0 |a|=Fk k=0 |a|=Fk

= o | D D faly)n® | € T,

k=n-+1 |a‘:k;

so that a — a, € JV(U) whenever n > N — 1 and by uniqueness of the limit we obtain

a=¢n [ DD fa)n® | =)D d(fa)(@hm)”.

k=0 |a|=k k=0 |o|=k

Arguing similarly as in the Zy-case and applying the ZJ-version of polynomial approximation
(see [16], page 14) we can thus state that ¢}, is uniquely determined on all Z3-functions in
Cu(W). The remaining part of the theorem can be proved as in the Zs-case (see [16], page

14). m



Chapter 3

Integration theory

3.1 Linear Zs-algebra

3.1.1 Zs-modules and linear maps

Let A be a Zs-algebra over R, i.e. a Zs-vector space over R equipped with a Zy-commutative
associative unital R-bilinear multiplication - that is compatible with the Z,-grading in the sense
that A, - A; C A1 ;. Let M be a Zy-module over A, i.e. a Zs-abelian group together with an
A-action < that is compatible with the Zy-grading in the sense that A; < M; C M, ;.

Remark 3.1.1. Recall that a left action < verifies for all a, f € A and all m, m’ € M ,
i a<g(fam)=(a-p)am,
. 1gy<m=m,
ili. (a+p8)dam=a<xm+pam,
iv. aga(m+m')=a<m+aam

and that due to supercommutivity there is a one-to-one correspondence between left and right
actions, for instance each left action < induces a right action > by setting

moea = (—1)""a<am
for all o € A and all m € M.

Definition 3.1.2. The set of linear maps between two Zy-modules M and N over A is defined

as
Hom(M, N) := Hom_4o(M, N) @ Hom 41 (M, N),

where a linear map A € Hom (M, N) of degree A € {0, 1} is an additive map X : M; — Ni.x
that satisfies -
Maam) = (=1)**a aX(m)

or, equivalently, in terms of the corresponding right action
A(m>a) = A(m)>a.

Then Hom4(M, N) is a Zy-abelian group as direct sum of abelian groups. The action <\
of w € Aon A € Hom4(M, N) defined by

(< X)(m) :=a<a(m)

)
)

in view of the Zy-commutativity of
of linear maps between Z,-modules

for all m € M, is a new linear map o< A € Homy(M, N
the multiplication - in \A. Hence the group Hom4(M, N
over A is itself a Zy-module over A .

29
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Remark 3.1.3. In the following the symbols -, < and > will be omitted.

In standard non-graded linear algebra an element m in a free module M over some commu-
tative algebra A of rank p can be identified with a vector

I

e AP .

mP

A linear map [ € Hom4(M, N) between free modules of rank p and r can then be identified with
a matrix L € gl(r x p, A), where gl(r x p, A) denotes the space of r X p matrices with entries
in A, so that multiplying L with the representative vector of m we obtain the representative
vector of [(m).

We have similar vector and matrix representations in linear Zs-algebra. Let M be a free
Zs-module of rank p|q over a Zy-commutative associative unital R-algebra A. If M has the
basis (€1, ..., €p, €pi1,-..; €piq) , Where the first p elements are even and the remaining elements
are odd, then every m € M reads uniquely as

P q
m = g e;m" + g ep+am”+a: g e m?
i=1 a=1

A

1

for some m?,...,mP*? € A. Therefore, m can be represented by the vector

ml

mp

1%

c Ap\q 7

mpPta

where
m',...,mP € Ay and mPL .. mPTl e A,

when m is even, whereas
mb,...,mP € Ay and mP™!, ... mPTI € A,

when m is odd. As indicated above the space containing such vectors is denoted by APl |

Moreover, a linear map A € Hom4(M, N) between free Zy-modules of rank p|g and r|s has
a representative Zo-matrix

Al B
A= € Zo gl(r|s x plq, A)
C\|D

with
Aeglrxp, Ay),Beglrxq, Ay),C €gl(s x p, A1) and D € gl(s x ¢q, Ap)
when A is even and with

Aeglrxp, A),Begl(rxq, Ay),C € gl(s x p, Ag) and D € gl(s x q, A;)
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when ) is odd. Depending on the parity of A\ we refer to A as an even respectively as an odd
Zo-matrix. As indicated above the space of Zs-matrices of size r|s x p|g with entries in A is
denoted by Zs gl(r|s x p|q, A). Furthermore, the representation of linear maps by Zs-matrices
preserves addition, multiplication by scalars and composition:

AENZALA,
a\ = al
)\//O)\gA//A’

where A, A’ € Zygl(r|s x plq, A) are the representative Zy-matrices of A, ' € Hom4(M, N),
a € Aand A" € Zs gl(ulvxr|s, A) is the Zs-matrix of " € Hom 4(N, P). The sum and product
of two supermatrices are defined as for standard matrices but the definition of oA deviates from
the standard definition. More precisely, to ensure that the representation of linear maps by
matrices preserves multiplication by scalars in the context of supercommutativity, we have to
set

Al B aA ‘ aB

c|p (—1)%aC | (~1)%aD

(3.1.1)

Analogously, the adjoint operator A* € Hom 4(/N*, M*) of some linear map A € Hom4(M, N)
is a linear map between the dual of N and the dual of M . Taking into account the Zs-grading
we define it by setting

N (n*)(m) = (1) n*(A(m)) € A
for any n* € N* = Hom4(N, A) and any m € M . If

A|B
C|D

A:

is the representative Zo-matrix of A then the representative Zs-matrix of \* is given by

( tA tC
( ) ) if A is even,

tA | —tC
(tB ) > if A\ is odd.

We refer to Z2'A as the supertranspose of A . Similarly, the Z,-trace of A must be defined as

Zotr (A) :=tr A — (—1)]\trD.

3.1.2 Zs-Berezinian

One of the main properties of the classical determinant for standard matrices is multiplicativity,
i.e. if A and B are matrices over a commutative ring then

det(A-B) =det A-det B .

A:(Z Z) and Bz(i ?)

However, if



32

are 2 X 2 matrices with entries in a non-commutative ring then

a b\ (a [ - a4+ by apf + bd
det ((c d> (7 (5)) = det <ca +dy cB+dd
= aacf + aadd + bycf + bydd — afca — afdy — bdcaw — bddry

and

a b Q@
det (c d) det (’y g) = (ad — be)(ad — By)
= adad — adfBvy — bead + befry,

which shows that the classical determinant is not multiplicative in a non-commutative context.
Since in linear Z,-algebra we are working with matrices over a Zs-commutative algebra — so a
(slightly) non-commutative algebra — the above example highlights the necessity of introducing
a new map that replaces the determinant in the case of matrices over Zs-commutative algebras.
This new determinant, which shares some important properties with the standard determinant
and will play a fundamental role in Zo-integration theory, will be called Zs-Berezinian.

According to I. Gelfand and V. Retakh every good notion of a determinant is made of
quasideterminants (see for example [23], page 58). Therefore, we briefly introduce quasideter-
minants. Let A and D be square matrices of size p and ¢ respectively and assume D to be
invertible. Then the block matrix

A|B
A pu—
C|D
can be decomposed into
Al B 1|BD'\ [ A-BD'C|0 1 o
A= = (3.1.2)
c|p 0] 1 o |p )\ picl

and this decompostion is referred to as UDL decomposition since on the right-hand side we
have an upper unitriangular, a diagonal and a lower unitriangular block matrix. If A has entries
in a commutative ring then it makes sense to apply the standard determinant and we obtain

det A = det(A — BD™'C) - det D.
Building on this observation we make the following definition.

Definition 3.1.4. Let
A| B

C|D

A:

be a square block matrix with entries in a unital not necessarily commutative ring R. The
quasideterminant of A with respect to the block entry 11, i.e. with respect to the block A, is
given by

Al B
C|D

= A—-BD'C,
11

provided D is invertible over R .
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Example 3.1.5. Dividing the matrix

o o8
<
N Qo

over R into blocks in two different ways and calculating the quasideterminant with respect to
the respective upper left-hand block entry yields

FHNEReR
e flz |, c vy d

and

xla b y DN /e
cly d ::c—(a b)( ) (),
e|f 2|, Iz €

where the inverse of the 2 x 2 matrix in the second line can be shown to equal

(y—dz"tf)7 ! —(y —dz"1f)"Mde! 3.1.3
—zilf(y _ dzflf)fl Zfl + zflf(y _ dzflf)fldz—l ) ( t )

if all the inverses exist.

Remark 3.1.6. As can be seen in Example 3.1.5 quasideterminant consist of rational functions,
not necessarily polynomials. It follows that, as already mentioned above, certain inverses must
exist in order to allow for a certain quasideterminant to be defined.

Collecting some important properties of the classical determinant, which we would also
like the Zs-Berezinian to verify, we obtain for all matrices X, Y € gl(n, R), A € gl(p, R),
Beglpxgq R),Cegllgxp, R)and D € gl(qg, R):

i, det(X -Y) =det X -detV

. Al O

ii. det (T‘ﬁ) = det A -det D s

1|B 110

iii. det (T‘T) =1 =det (7‘?) s

iv. deteX = "X |

For a matrix X in the Lie algebra gl(n, R) over R we have that
xog X
k!
k=0
is an element of the Lie group

GL(n, R) = {X € ¢gl(n, R)| det X # 0},

so that Property iv can be summarized by saying that the determinant is the group analogue
of the trace.
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Concerning the usefulness of determinants in integration theory, we recall that if y = y(x)
is a standard coordinate transformation between open subsets U and V of RP and 0,y is
the corresponding Jacobian matrix, a function f(y) is integrable over V' (with respect to the
Lebesgue measure) if and only if the function f(y(x))|det 0,y| is integrable over U and in this
case

/V dy f(y) = / dz f(y(z)) | det B,y

Now that we have specified our conclusions from the first paragraph of this subsection, let
us recall that we are currently working towards the definition of a Zy-Berezinian determinant
that has properties similar to Properties i - iv and is defined for certain matrices A € gl(plq, A)
with entries in a Zs-algebra A over R. Since a Zs-coordinate transformation

in a superdomain U?14 = (U, C;ﬁ]) preserves the parities and is invertible, its Jacobian matrix is
the even invertible matrix

aa:y aéy

€ Zy GLo(plg, Cp3(U)) .
axn 6577

plg

This suggests that for our application in integration theory it is sufficient to define the Z,-
Berezinian on the group Zs GLg(p|g, A) of even invertible Zo-matrices of size plg X p|g with
entries in a super R-algebra A. It should be valued in the group A of even invertible elements
of A and hence we are looking for a group morphism

Zo Ber : Zs GLO(p|q, A) — AE)(

that also verifies properties similar to ii - iv.

First note that similarly to the result proved in Proposition 1.2.7, which states that a Zo-
function is invertible if and only if its parameter-free even part is invertible, it can be shown
that an even matrix

Al B
A= € Za gly(plg, A)
C|D

is invertible if and only if A € gl(p, Ap) and D € gl(q, Ap) are invertible. We refer to [20],
page 24, where a more general result is proved. Considering that we want to define the Z,-
Berezinian on the group Z; GLo(p|q, A) of even invertible matrices we can therefore always
assume that the blocks A and D are invertible. Since the classical determinant works well for
blocks consisting exclusively of even elements this is equivalent to assuming that

det A, det D € Aj . (3.1.4)

Moreover, we observe that if Property iv, adapted to the Zs-graded context, holds for Zs Ber
and Zs tr then we have

A (AH) ot (AH)
0 2
Z, Ber ‘ 5 = 7+ Bere 0 =e 0D

=" ATUP =" A ( " P) T = det e - det e (3.1.5)

where the second equality follows from the Zs-version of Property iv and the last equality
follows from the original version of this property.
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Hence if we assume that the Zs-analogues of the properties i, iii and iv hold, then the UDL
decomposition (3.1.2), the fact (3.1.4) that A and D are invertible and the Zs-analogue (3.1.5)
of Property ii imply that the Z,-Berezinian of a matrix

Al B
A= € Zy GLo(plq, A)
C|D
must necessarily be given by
Al B A-BD'C| 0
ZQ Ber =1- Zg Ber
D 0 |D

= det(A— BD™'C)det™'D.

So defined the Zs-Berezinian of A is invertible since
ZyBerA-ZyBer A=t = ZoBer (A-A™') = ZyBer1 =1,
so that Z, Ber A~! is the inverse of Z, Ber A .

Theorem 3.1.7. For every Zs-commutative associative unital R-algebra A there exists a unique
group morphism

Zo Ber : Zy GLo(plg, A) — A
such that

(i) Z Ber< 2

(ii) 7 Ber <%) 1= 7,Bar (%) |

It is given by
Al B -1 ~1
Zs Ber oo )= det(A—BD " C)det ' D. (3.1.6)

Proof. 1t can easily be verified that the Zs-Berezinian when defined as in (3.1.6) has the prop-
erties (7) and (i7). The proof of multiplicativity is more involved and will not be given here
(see [20], page 24 for the proof of a more general result). The above approach shows that a
map that has all the required properties must necessarily be given by (3.1.6) and thus solves
the problem of uniqueness. O

=det A-det™'D and

ol
~—

o=

3.2 Linear Zj-algebra

3.2.1 Z3-modules and linear maps

We consider 1 < n € N and as explained in Section 2.2 we assume the Z3-degrees 7o, ..., Yan_1
to be given in standard order. Let A be a real Z-algebra and define linear maps

A € Hom 4 5(M, N)

of degree \e {70, .-, Yan—1} between Zj-modules over A analogously to the Zy-case. Then set

2" —1 2™

Hom4(M, N) := @ Hom., (M, N) = @HomA,pi(M, N),

=0 =1
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where we introduce the alternative notation I'; = 7,_; for the Z}-degrees in order to simplify
some of the results below.

If M and N are free Zj-modules over A of rank p|g and r|s respectively, where ¢ =
(q1,.-yqon—1) and s = (81, ..., Son_1), then their elements can be represented by column vec-
tors and linear maps between them by matrices. For instance, for any m € M of degree v we
have the identification

mP

12

e Ap‘g

mp+q1

mpttaen 2+l

mpttaen—1

for some m!,...,mP € A, , mPT . omPte € A and mptota-otlompteta e A for
ie{2,..,2" 1}

Now fix n = 2 and consider a linear map A € Hom 4, (M, N). Taking into account that A
must in particular preserve the parity of degree (0, 0) elements

(0, 0)
m = (L, 1) € .Ang
(0,1)
(1,0)
we obtain the identification
(0,0) | (1, 1) | (0, 1) (1, 0)
A=A = SRRSO € Z3 gl (r|s x plg, A)., (3.2.1)
(0,1)](1,0) | (0,0) | (1, 1) B
(1,0) (0, 1) | (1, 1)1 (0, 0)

where each block contains elements of A that have the Z2-degree specified in the corresponding
part of the vector or matrix. For instance, setting ¢ = (¢1, ¢2, ¢3) and s = (s1, S2, S3), the
elements in the r x g3 block in the top right-hand corner of A are of degree (1, 0). Note that
dividing A into four blocks by means of the double lines in (3.2.1) the blocks in the top left-hand
and the bottom right-hand corner only contain elements of even degree whereas the two other
blocks consist of odd elements.

Proceeding similarly for n = 3 we obtain that a linear map A € Homr, (M, N) can be
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identified with a matrix A € Z3 glp (r|s % plg, A), where

(0,0,0)|(0,1,1) | (1,0, 1) | (1,1,0) | (0,0, 1) | (0,1,0)|(1,0,0)](1,1,1)
(0,1,1)](0,0,0) | (1,1,0)|(1,0,1) | (0, 1,0)|(0,0,1)| (1, 1,1)|(1,0,0)
(1,0, 1) | (1,1,0) | (0,0,0) | (0,1, 1) | (1,0,0) | (1,1,1) | (0,0,1) ] (0, 1, 0)
A\ (1,1,0) | (1,0, 1) (0,1, 1) | (0,0,0) || (1,1,1) | (1,0,0)|(0,1,0)] (0,0, 1)
(0,0,1) (0, 1,0) | (1,0,0) | (1,1, 1) (0,0,0)|(0,1,1)| (1,0, 1) (1, 1, 0)
(0, 1, 0) | (0, o, 1| (1,1,1)](1,0,0)| (0,1,1)(0,0,0)(1,1,0)] (1,0, 1)
(1,0,0)|(1,1,1)|(0,0,1) | (0,1,0) || (1,0,1)|(1,1,0)](0,0,0)(0,1,1)
(1,1, 1) (1,0,0) (0,1,0)| (0,0, 1) | (1,1,0)|(1,0,1)](0,1,1) (0,0, 0)

and we can observe again that the double lines divide A into two even and two odd blocks.

Remark 3.2.1. These observations can be generalized, i.e. if A € Z3glp (r[s x plg, A) then
its block Ay; exclusively contains elements of Z5-degree I'y, + 17, + T'; .

As in the Zs-case the identification
Hom 4 (A", A") = 75 g1(r|s x plg, A)

between linear maps and matrices preserves the Z-degree, addition, multiplication and external
multiplication by scalars a € A provided we set

(_1>(6‘7F1>0[A11 [ e (—1><d’F1>O[A12n

al =

(_1)(54,F2n)aA2n1 e e (—1)<d7r2n>OéA2n2n

for any A € Zy gl(r|s x p|q, A). Note that this definition is consistent with the Zy-case as it
reduces to (3.1.1) if n=1.

Furthermore, the Z,-trace can be generalized to the Zj-context as stated in the following
theorem.

Theorem 3.2.2. There exists an A-linear graded Lie algebra morphism of degree 7y
Zy tr : Zy gl(plg, A) — A .
It is unique up to multiplication by o € Ay and it is given for A of degree I'; by

Ay |- oo | Agon
: : 2"
Zg tr : : _ Z(_1>(Fk+Fi,Fk) tr Akk ,
: : k=1
Aoy |- || - | Agngn

where tr denotes the usual trace.

Note that the usual trace is a Lie algebra morphism as it satisfies, for any two matrices A
and B with entries in a field, tr(B - A) = tr(A - B), which implies

tr[A, B]. =0 = [tr A, tr B].,

where [—, —]. denotes the commutator bracket. Moreover, it can easily be verified that the
Zo-trace coincides with the Zj-trace for n = 1. For a proof of Theorem 3.2.2 see [20], page 9.
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3.2.2 Z3-Berezinian

With the objective of generalizing the Z,-Berezinian to a Zj-Berezinian we formulate the

Theorem 3.2.3. For every Z3 -commutative associative unital R-algebra A there exists a unique
group morphism
Zy Ber : Ziy GL, (plg, A) — A%,

such that
Al O
(i) 7% Ber (%) = Z5det A-Z3 det™' D and

1| B 110
(ii) 7% Ber J— =1="7%Ber 4L .
0 1 C
It is given by
A| B
Z3 Ber (—“—) =78 det(A — BD'C) - Zidet ' D.

C\|D
As indicated by the use of double lines and by Remark 3.2.1, the blocks A and D in the

above theorem are made of even elements, i.e.

A7 D e (Zg)ev gl’m(p’geV’ A)

However, it does not make sense to apply the classical determinant to them as their entries
do not necessarily commute. So before we can prove or even formulate the above theorem, we
have to look for a suitable replacement for the classical determinant. We keep the axioms of
the previous theorem motivated in Section 3.1.2.

Theorem 3.2.4. There exists a unique map
Zy det : (Z3) ey 8l (p|gev, A)— A,
such that

(i) Z% det is multiplicative,

Al O |- 0
0 | Ay |- 0 2n!
(i) Zadet | —— : = [ det Ak € A, and
: : . : i)
0 0 A A2n—12n—1

(7ii) applying 74 det to an upper unitriangular or lower unitriangular matriz yields 1.

Note that all blocks Ay are of Zj-degree 7 and therefore have commutative entries, so
their classical determinant makes sense.

Proof. The proof makes use of the fact that every matrix A € (Z3)ev gl (plg, ., A) has a UDL
decomposition, which can be shown to equal

|Af11 0 0 0
0 | A 0 0

A = UDL = U 0 0 |A12:12’33 O L,
: 0

0 0 0 O A2n—12n—1
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for some upper respectively lower unitriangular matrices U and L and where |A¥!|y; denotes
the quasi-determinant with respect to the block entry A,y of the matrix obtained from A by
omitting block row 1 and block column 1. Based on this decomposition we can then argue that
if the Z3-graded determinant exists it must be given by

Zg det A = det ’A‘H - det ’A1:1|22 -...-det A2n—12n—1 < A’YO . (322)

In view of the fact that quasi-determinants are made of rational functions a crucial and chal-
lenging part of the proof is to show that Z} det A is a polynomial after simplification and that
73 det is multiplicative. ]

For a complete proof of Theorem 3.2.4 we refer to [20], page 10. We limit ourselves here to
a couple of examples that illustrate what has just been said.

Example 3.2.5. Let

z|lal|b
dlylel|f
A= € (Z3)ev gl(o,o,())(1|(17 1, 1), A
g|h|z]|l
m|n|plw

be a matrix over a real Z3-algebra A. According to (3.2.2) and taking into account that each
block of A consists of a single element the graded determinant of A is given by

Zg det A = |A|11 . ’Ahllgg . |A12:12|33 . A44 .

Clearly, we have
A44 = w

and applying Definition 3.1.4 we get
|A12:12‘33 =y l'LU_lp.

Hence it remains to calculate two quasi-determinants. Setting o := w™! and 8 := (z —lw™1p)~!
we have

|A1:1‘22 —

o=
& | ~|=

11

0 () ()

—y—(e f) ( (2 —lw™'p)~! 1 —(z = lw™'p)Hw™! ) ( h )

—w p(z — lw™p)™ w +wlp(z = lwTtp) Hw ™! n
=y —efh + eflan + fapBh — fan — fapBlw™'n

= afly(zw — Ip) + fph + eln — ehw — fnz],

where formula (3.1.3) is used to compute the inverse matrix and the Z3-commutation rule is
applied in order to simplify the resulting expression. Observing that Ay = o~ and |[A1#12]35 =
71 we obtain that multiplying the three last factors of Z3 det A yields

v:=y(zw — lp) + fph + eln — ehw — fnz.
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Concerning the first factor of Z3 det A we compute

x|a|bl|c
_|d]yle|f
Al = glh|z|l
mi{n|plw |,
yoe S\ [d
:x—(a b c) h z 1 g
np w m
v izw —1Ip) v Hfp—ew) vi(el— f2) d
=z—(a b c)| vi(n—hw) v yw— fn) v (hf—ly) g
vl (ph —2n) v t(ne—py) v (yz —eh) m

= v zv — (a(zw — Ip) + b(In — hw) + c(ph — zn))d
— (a(fp — ew) + blyw — fn) + c(ne — py))g
~(alel - f2) + b(hf — ly) + c(yz — eh))m].

where the calculation of the inverse of the involved 3 x 3 matrix, that can among others be done
using its UDL decomposition, is omitted. Finally, multiplying by v and expanding we obtain

Zidet A = axyzw — aylp — vehw — xfhp + weln — xfzn
—adzw + adlp + aegw + afgp — aelm + afzm
—bdhw + bdin — bygw + bfgn + bylm + bfhm
—cdhp — cdzn — cygp + cegn — cyzm + cehm.

Example 3.2.6. Consider the matrix

d ylelf
A= h S (Zg)ev gl(0,0,0) (0|(27 17 1)7 A)a

where A is a real Z3-algebra. Its graded determinant is given by
Zidet A = det |A]1; - |[AY oy - Ass
and we immediately obtain
Az =w and [Ny =2z—Ilw'p.

Denoting once again w—! by a and (z — lw™'p)~! by 3 the remaining factor of Z3 det A can be
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computed as follows:

z albl|ec

| d ylelf

|A|1l_ghzl
m niplw |,

)—1
(z — lw™p)~ —(z = lw™tp) Hw™!
—w p(z —lwp)™t wl +wlp(z — lwlp) Hw ™!

() )G

)= (0 5)(

B ( x —bBg + bBlam + capBg — cam — capBlam

()

1

o o

) (

so that

det |Al11 =(z — bBg + bBlam + capBg — cam — capflam)
(y — eBh + eflan + fapfh — fan — fapBlan)

—(d —efg+ eBlam + fapBg — fam — fapBlam)
«(a — bBh + bBlan + capBh — can — capflan) .

After multiplication with w = a~! and z — lw™!p = 7! the resulting expression can be
simplified taking into account the Z3-degrees of the involved components and we obtain
Z3det A = axyzw — aylp — vehw — xfhp + weln — xfzn

—adzw + adlp +
+ bdhw — bdin —
+cdhp + cdzn —

aegw + afgp — aelm + afzm
bygw — bfgn + bylm + bfhm
cygp — cegn — cyzm + cehm.

Remark 3.2.7. It should be noted that Z5 Ber coincides with the Z,-Berezinian if n = 1 and
thus constitutes a generalization of the standard Berezinian. Furthermore Z3 Ber coincides
— except for its sign — with the Dieudonné determinant if we set A = H (where H denotes
the algebra of quaternions) and it can be verified that Z% Ber is the group analogue of ZJ tr.
All these properties confirm that the ZJ-Berezinian is a suitable replacement for the classical
determinant in Z3-algebra. For a proof of Theorem 3.2.3 we refer to [20], page 24.

3.3 Integration on smooth manifolds

On our way towards integration on Zj-manifolds we first deal with integration on smooth
manifolds as integration on colored supermanifolds generalizes this theory.

Let N be a smooth manifold of dimension p and (U, ¢ = (z',...,2)) a coordinate chart
from an atlas @y of N . Any differential (smooth) top-form w € QP(N) is locally given by
w|U:fdxl/\---/\d:Up

for some f € C*(U), whose support we assume to be compact and contained in U for the time
being. Due to this assumption we can set

/w—/w| —/fdxl/\---/\dxp:—/ f(x) dz' - daP,
N v Y U ()

(3.3.1)

g h

m n

a — bph + bBlan + capBh — can — capBlan
d—efg+ eflam + fapBg — fam — fapBlam y — efh + eSlan + fapBSh — fan — fapBlan

)
)
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where the right-hand side denotes the Lebesgue integral of f o ¢ over ¢(U) C RP.

Requiring the integral of w over N to be well-defined means that [, w defined as in (3.3.1)
should be independent of the choice of coordinates in U. In order to prove coordinate-
independence we need another assumption, namely that /V is orientable. What it means for a
smooth manifold to be orientable becomes clear when considering the non-orientable Mobius
strip M.

Figure 3.1: non-orientable manifold

The blue arrows represent bases of the corresponding tangent spaces. Since the two leftmost
bases (0,1, 0,2) and (0,1, O,2), where the first (resp. second) vectors are horizontal (resp.
vertical), are direct bases their transition matrix, which equals the Jacobian matrix of the
coordinate transformation from z- to y-coordinates, satisfies det 9,y > 0. However, as indicated
in the above figure we cannot equip the whole manifold with bases that verify this condition.
This means that there does not exist any atlas oy, = (U,, ©a)a satifying

det(pg 0 95") () > 0

for all € ¢, (U,NUp) and for all indices o and /5, which is a defining criterion for orientability.
Moreover, it can be observed that on non-orientable manifolds such as M there does not exist
any nowhere vanishing top-form, which constitutes an equivalent criterion for orientability.
Indeed, the top-form represented by the green arrows is not smooth and the one indicated by the
red arrows vanishes. We conclude that orientable smooth manifolds admit nowhere vanishing
(smooth) top-forms and atlases whose Jacobian matrices have strictly positive determinants.

Hence we formulate our additional hypothesis as follows. We assume N to be orientable
and let {2 be a nowhere vanishing top-form on N, which we call volume form. Then we fix an
orientation, either €2 or —(2, and choose a compatible atlas & , i.e. an atlas that is compatible
with the chosen orientation and where the determinant of each Jacobian matrix is strictly
positive. For example, the Cartesian space R? is orientable with Q = da! A --- A dzP as volume
form.

Picking two coordinate charts (U, ¢ = (z!,...,27)) and (U, ¥ = (y',...,4")), where for

simplicity we assume the coordinate domains to coincide, the integral | W can be expressed as

fodxl/\---/\dxp:f(U)f(:v) dxt - dxP

/w_/w, — ’ . (3.3.2)
N v 'Y dy?

Jogdyt Ao ndyP = [ 9(y) dyt

We need to show that the Lebesgue integrals on the right-hand side of (3.3.2) coincide. First, we
observe that the coordinate transformation between z- and y-coordinates allows us to express
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w locally as
9(y) dy' A N dyP =
= f(z(y)) da* A -+ AdaP (3.3.3)

= f(x(y)) Z ayal 1'1 e ayﬂpl'p dyUl ANEERIA dyUp

= f(z(y)) Z Oy Oyopa? signo dy' A+ A dy?

(o1-0p)=0€Sp
= f(z(y)) detdyx dy' A--- Ady?, (3.3.4)

so that
9(y) = f(z(y)) det Oy .
Then

where the third equality follows from the orientability assumption and the fourth equality from
the coordinate transformation theorem for Lebesgue integrals. This concludes our proof of
coordinate-independence for integrals over smooth manifolds.

Next, we would like to define the integral over a p-dimensional smooth manifold N of an
arbitrary top-form w € QP(N). This means that we drop the assumption about the support
of w, while the assumption that N is orientable and oriented remains valid. Using a partition
of unity ((,). subordinate to a locally finite compatible atlas ¥y = (Ua, ¢a)a , We define the
integral of w over NN by setting

- (£e) -2 e

provided the series on the right-hand side converges in R. Note that (, w is a top-form whose
support is compact and contained in U, , so that each of the integrals in the series is defined
by (3.3.1). It can be verified that [, w does not depend on the choice of the partition of unity.

3.4 Integration on Zj-manifolds

3.4.1 Z3-Berezinian-sheaf of a Zj-manifold

Once again let N be a smooth manifold of dimension p and let (U, ¢ = (x!,...,27)) be a
coordinate chart of N. We denote by M := Q'(U) the C>®(U)-module of differential 1-forms
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over U . Denoting furthermore the real commutative algebra C*(U) by A we obtain that M is
a free module of rank p over A. Considering the exterior algebra AM of M we set

Det M := APM = APD(T*U) = D(APT*U) = QP(U) = C2(U)Q,

where ) is the volume form da'A---AdxP . Of course Det M is a module of rank 1 over A. Now
we make an important observation concerning the relation between M and Det M . Namely, a
basis transformation in M , given by

dy’ = Z Oyity da’

and characterized by

induces a basis transformation in Det M , characterized by det B. Indeed, looking at (3.3.3)
and (3.3.4) above and exchanging the roles of x and y we find

dyt A - AdyP = det O,y dxt A -+ A daP

with
det O,y = det*0,y = det B.

Our goal is to generalize Det M = QP(U) to the Zj-context, which cannot be done in a
straightforward way since there are no Zj-top-forms. As seen in the previous section Det M
is the module of objects that can be integrated over smooth manifolds and by generalizing
Det M to the Z3-setting we intend to find the module of objects that can be integrated over
Z3-manifolds.

We start with a real Zj-algebra A and a free Z5-module M of total rank r over A. The
problem we are trying to solve can then be described as finding a free Z3-module Z3 Ber M of
total rank 1 over A such that a basis transformation in M characterized by B € Zj GL,,(r, A)
induces a basis transformation in Zj Ber M characterized by Zj Ber B.

Before solving this problem using tools from cohomology theory we briefly recall tensor
products of vector spaces and modules.

Remark 3.4.1. The tensor product V ® W of two real vector spaces is itself a vector space
over R. If M and N are modules over a commutative ring R their tensor product M ®r N is
also an R-module. Considering the same situation with R being an arbitrary not necessarily
commutative ring we obtain that M ®% NN is an abelian group or, equivalently, a module over
Z . Now let M and N be Zj-modules over a real Zj-algebra A. The tensor product M ®4 N is
a Z45-module over A as well and taking two copies of M we can define the ZJ-symmetric tensor
product M ®4 M , which is another Zj-module over A and we have

mon=(=1)""nom .

Taking the free Zj-module M considered above, we shift the degree of each of its elements
by a fixed odd Z3-degree v and obtain a new free Zj-module of total rank r over A, which we
denote by M[y]. This shift makes sure that the square of the cohomology operater introduced
below vanishes. Taking into account Remark 3.4.1 we obtain that

K:=04iM[y] @ ©aM* (3.4.1)
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is a Z3-module over A as tensor product of two such Z5-modules. Furthermore K can be
equipped with a multiplication ® detailed below and can thus also be seen as a Zj-algebra over
A. Choosing a basis (e;); of M and denoting the corresponding dual basis of M* by (&'); we

define an element .

§:= Zei[fy] ® e ek. (3.4.2)

i=1

Combining the fact that A
E’(ei) =1 A
with the observation that the identity element 14 in A is of degree vy it becomes clear that e;
and €' must have the same degree for every i € {1,...,7} . Therefore, the degree of ¢;[y] is odd

if the degree of €' is even and vice versa, which implies that in each term of § there is exactly
one odd factor.

Let
Zm v ®at ek

be the finite sum of some tensor products of elements in m[y], n[y] € M[y] and a* € M*. We

define the value of § on
> mhlonhlea
fin

by setting

5 (me ©nly] ®a*> = (Z el ®ai> © (th] ©nly] ®a*)

:=ZZ(— )EmH R (¢ [y] @ my] © n[y]) @ (' © o),

where the term 27 in the exponent can be omitted as 2v = vy . If we define the cohomological
degree of an element in K to equal the number of odd factors each of its terms contains, then
the cohomological degree of § is 1. If an element x € KC has cohomological degree [ then the
above definition implies that (k) is of degree [ + 1. Hence 0 can be seen as an A-linear map

§: K — K'Y such that 62 =0.

Indeed, we have
5 = Z(—I)@’éj*” Moehl © o
_ Z ez ej+'y 1)(el+’y €+t e M Oely] ® (_1)<éi7éj>€j o
_ Z Yt NHEt Gt GG e (1] @ ely] @ & O &
_ Z Yetralehloeah ® e oe

Z—Z JEseloehl ® & o,

where the roles of ¢ and j have been interchanged in the last step to show that 2 is equal to
its opposite and thus vanishes.
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Moreover, it can be shown that the operator d is independent of the choice of the basis (e;);
of M.

Therefore (KC°, §) is a cochain complex of Z4-modules over A . Consequently, its cohomology
H' (K, 9) is a graded Z35-module over A, where graded refers to the cohomology degree. This
cohomology can be computed and we state without proof the

Theorem 3.4.2. [15] Let M be a free Z-module of total rank r over a real ZY-algebra A and
let (KC°,9) be the cochain complex defined by (3.4.1) and (3.4.2). For every k # r the degree k
cohomology 75 -module of (IC', §) is given by

H*(K', 6) =0
and for k = r we have
H" (K, §) = [Q]A,

which is a free Z%-module over A of rank 1 and where Q € ker" § C K" is the product of all odd
vectors among the e;[y] and the €' associated to a basis (e;); of M .

Note that Z§ Ber M , the free Z3-module over A of rank 1 that we are looking for, should
be given by H' (K", 0) = H" (K", §) = [Q]A. Tt remains to check whether a basis transformation

in M characterized by a Zj-matrix B induces a basis transformation in H" (K", §) characterized
by Z5 Ber B .

To this end, we make another small digression on tensor products.

Remark 3.4.3. Let V and W be finite dimensional real vector spaces. If [ : V — W is an
isomorphism then 7' : W — V and (I7')* : V* — W* are isomorphisms as well. Furthermore,
we can define an isomorphism [© : ®V — @W by setting

191, .oy vp) == 1(v1) © - @ (vy),
so that (l_l)*Q € Isom(®V*, ©W*). The tensor product of these last two maps yields
1°® (I7)* € lsom(OV @ OV, oW @ 0W*).

If (e;); and (€}); are two bases in a real vector space V' of dimension p then the corresponding
basis transformation in V' is characterized by some matrix B € GL(p, R), or equivalently by
the corresponding automorphism 5 € Aut(V'). Analogously, a basis transformation in a free
Zz-module M of rank r over A is characterized by some Zj-matrix B € Z3§ GL,,(r, A) that
can be identified with an automorphism

B € Aut g, (M) .

The Z3-transpose of the inverse of B corresponds to (87!)* € Auta,,(M*) and we use these
automorphisms to construct

Op =2 (87 € Autaq,(K).

Since @ is actually an invertible cochain map from (I, 9) to itself, by applying the cohomology
functor H to it we obtain

H(®p) € Aut 4, (H(K, 9)),

the map that characterizes the basis transformation in H(KC, §) which corresponds to the basis
transformation in M characterized by 5. Observing that

Attt (H(K, 8)) = Z5 GL,, (1, A) = A,
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we get the map
H(®) : Z5 GL,,(plg, A) > B~ H(®p) € A,

Y0 ?

which can be shown to satisfy all of the characterizing properties of Z Ber. Since Z% Ber
is unique by Theorem 3.2.3 we must have H(®p) = Z5 Ber B for all B € Zj GL,,(plg, A),
which implies in particular that a basis transformation in M characterized by B induces a
basis tranformation in H (K, 0) characterized by Z} Ber B as expected.

Hence we can finally set

Z3Ber M :=H(K, ¢) = [Q]A.

Note that Z§ Ber M can be thought of as the module of algebraic ‘Zj-top-forms’ in view of
its similarities with the module of top forms Det M = QP (U) in differential geometry, where
M = Q'(U) is the module of differential 1-forms over the algebra C>*(U) of smooth functions on
some coordinate domain U of a p-dimensional smooth manifold N . Furthermore, comparing
[Q] to the volume form da' A --- A dzP in differential geometry suggests referring to [Q] as
algebraic ‘Z5-Berezinian-volume’. Let us stress once again that if a matrix B represents a basis
transformation
e = e B;-

in M, then Z% Ber B represents the corresponding basis transformation
QY] = [Q] Z5 Ber B (3.4.3)

in Z3 Ber M .

Now consider a Zj-manifold N' = (N, Oy) of dimension plg and a Zj-coordinate-chart
U = (U, p) of N'. Then the free Z3-module M := Q'N(U) over A := Ox(U) has total rank

an—1
P+ ai=p+gq

=1

and in the particular case n = 2 a basis of M is given by

(ei)i = (dxv dy> dga d77)7

where dz stands for the differentials of the p coordinates of degree (0, 0), dy represents the
differentials of the ¢; coordinates of degree (1, 1) and similarly for d§ and dn. Fixing v = (0, 1)
we obtain

(ei[v])i = (dx[v], dy[v], d€[v], dn[v]),

where the degrees are given by ((0, 1), (1, 0), (0, 0), (1, 1)). Furthermore we have the dual
basis
(€")i = (02, Oy, O, Oy)

where each ¢ has the same degree as the corresponding e;. These bases lead to the Z3-
Berezinian-volume

Q=dz[y| ©dy[y] ® 0 © 0, =: Qz, y, &, ) = Q)
and to the module
(Z3Ber Q'N)(U) := Z; Ber Q' N (U) = [Q]On(U) = {[Q(w)] f (1)} ,

of ‘Z3-top-forms’ of N over U or local Z3-Berezinian-sections of N over U .
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In order to investigate the coordinate transformation law for local Berezinian sections we
consider the case n = 1 and let ®,, be a generic supercoordinate transformation from p = (z, §)
to v = (y, n) given by

y =y, &) . = x(y,n)
, d dingl
{n =n(z, &) e ey {5 = &(y, n)

The corresponding basis transformation in M = Q!N (U) verifies
dy =dx 0,y + d{ 0y and  dn = dx 0,n + d§ Oen

or, more precisely,
dy/ = da' 0y’ + ) d€ Oy’ and  dn’ = da' O’ + > dg" Oen’

and is thus characterized by the matrix

Zot

Oyy | =0
_ VIZ%Y ) _ 2y, Jacd,, € Zo GLo(plg, A) .

@c n 8& n

The Zy-Berezinian of B is then given by
Z>Ber B = Zy Ber (®'Zy Jac ®,,,,) = ZsBer(Zy Jac ®,,) € Af = On(U),

where the second equality follows from the fact that the Z5-Berezinian, just as the classical
determinant, is invariant with respect to taking the transpose of a matrix. This result can
actually be generalized to an arbitrary n > 1, so that we have

Qv)] = [Qw)] Zy Ber(Zy Jac ®,,,) , (3.4.4)

in view of (3.4.3).

In order to find out which properties the transformation law for local Berezinian sections
should have we start considering transformation laws in different contexts.
For instance, a (p, q)-tensor T' € ®PV over some real finite-dimensional vector space V' can

be defined as a tuple (T;ll;;”) of components in every basis (e;); of V such that the coherent
transformation law
211 o ! ! 1b b lay---a
Tyoje = Bay - B By - Byl Ty,
holds. Here B’ = B~! and ‘coherent’ means, for instance in the case (p,q) = (1,0), that if
Ti — Bz T/a Tla — C[()LT//b Tz — li)Tl/b
a ? 9

characterize basis transformations between (e;); and (€}); , between (e}); and (e!); and between
(e;); and (e); respectively, then the matrices D and BC' coincide. This is the case since

Die; =e) = Cfel, = C¢Ble; = (BO)ie; .

Similarly, a global vector field X € I'(T'N) on a smooth manifold N can be defined in terms
of local vector fields Y, X*0,: for some X* € C*°(U) on every coordinate chart (U, z) of N in
conjunction with the coherent transformation law

X' =08,y
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In this case, coherence refers to the fact that if additionally to the above transformation between
2- and y-coordinates we have transformations from y- to z-coordinates and from z- to z-
coordinates given by

YI =042 and X'=0uz'Z"
then the matrices (0,x) and (0,x)(0,y) coincide. This is true in view of the theorem of differ-
entiation of composite functions.

Returning to Zj-geometry we consider a Z3-manifold N'= (N, Oy), where the base mani-
fold N is assumed to be orientable and oriented, and an atlas o, of Z3-charts of N'. Then we
define a global ZJ-Berezinian-section

o € (ZBer Q' N)(N)

of N as a family
Q)] f (1), [2W)]g(v) , ...

of local Z3-Berezinian-sections of N indexed by the Z3-charts of & that satisfy the coherent
transformation law

F() = 23 Ber(Z3 Jac @,,)" (9(»)) (3.4.5)

which is also referred to as gluing condition and where @, = ® = (¢, ¢*) denotes the transfor-
mation from p- to v-coordinates.

Condition (3.4.5) is natural since if the local sections can be glued they coincide on the
coordinate overlaps, i.e., due to (3.4.4), the section [Q2(u)] (1) coincides with the section

[2v)]g(v) = [Q(n)] Zg Ber(Zg Jac ., )g(v (1)) = [Q2(p)] Zg Ber(Zg Jac ©,,)6™(9(v)) -

In order to check whether (3.4.5) actually defines a coherent transformation law we con-
sider p-, v- and w-coordinates and denote the coordinate transformations between p- and
v-coordinates and between v- and w-coordinates by ®,,, and ¥, respectively. Accordingly, the
transformation from p- to w-coordinates is given by W, o ®,,. Then we have, omitting the
prefix Z7

f(/JJ) = Ber(JaC q)uu)¢*<g(y))
and

¢ (9(v)) = ¢" (Ber(Jac Up,)¢" (V7 (h(w)))
Thus f(u) can be expressed by

f(n) = Ber(Jac ®,,) ¢"(Ber(Jac ¥,,,)(¢* 0 ™) (h(w)) (3.4.6)

and by
£(1) = Ber(Jac(Wy, 0 B,,))(6" 0 ) (h(w)) (3.4.7)

Since the Z5-Berezinian is multiplicative we get
Ber(Jac(V,,, o ®,,)) = Ber(¢*(Jac ¥,,,) - Jac ®,,) = Ber(¢*(Jac ¥,,,)) - Ber(Jac®,,) .

Switching the order of Ber and ¢* in the expression on the right-hand side and taking into
account that ¢*(Ber(JacV,,)) and Ber(Jac®,,) commute as they are of degree v, we can
conclude that (3.4.6) and (3.4.7) are equal and therefore (3.4.5) is a coherent transformation
law.

In the same fashion as (Z% Ber Q'N)(N) we can define (Z3 Ber Q'N)(W) for any W €
Open(/N) and since restrictions and the gluing property are included in these definitions we
obtain that ZJ Ber Q' is a locally free rank 1 sheaf of Z3-modules over Oy , i.e. a Zj-vector
bundle of rank 1 over /. We refer to Z5 Ber Q' N as the Z3-Berezinian-sheaf of N .
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3.4.2 Integration on Zs-manifolds

In Section 3.3 we discussed how integration of global top-forms Q7 (M) over an oriented smooth
manifold M of dimension p works. Similarly, we would now like to integrate global Z,-
Berezinian-sections (Z, Ber Q'N')(N) over a Zs-manifold N of dimension p|q whose base man-
ifold is oriented. For this we consider a global Z,-Berezinian-section o € (Zy Ber Q'N) (V)
that is compactly supported in a Zs-coordinate-domain U C N . The restriction N |, can be

identified with a Zy-domain U equipped with Zs-coordinates pu = (x, £) and o is locally given
by

Q)1 f (1)
dﬂf[l]@@g] (z, §)

d!E[] @dxp[]®8§q®®agl]f(x,§)
d - A dx? ®85q. ~8§1]f(:r;, f),

|, = |
= |
= |
= |

where the change of notation between the second to last and the last line is motivated by the
fact that the differentials dz’[1] as well as the partial derivatives d¢e anticommute. The integral
of o over N is then given by

[oo= [ ot = [0 = [ e o nde @ 0201w 6).

In Section 3.3 we defined the integral [, dz' A--- Ada? f(z) for f € C*(U) to be equal to the
Lebesgue integral [, da'---dz? f(x) and verified that this integral is independent of the choice
of coordinates in U . Therefore, we would like to transform

/[dxl Ao Nda? @ Oga -+ - Ol f(z, €)
u

into an expression similar to |, U dz' A--- AdzP f(x) in order to be able to apply the definition
from differential geometry. Hence, it is natural to set

/ g:/[dxl/\/\d:vp®8§qa§1]f($7 g)
N U
= / dzt Ao A dz?(Oea -+ O f(, £))
U
= / de' Ao ANdaP fr g (2)
U
_ / dxl . dxp flq(x) , (3.4.8)
U

where f1_, € C2°(U) is the coefficient of the monomial £'€%...£9 in the compactly supported
superfunction f(x,¢).

Remark 3.4.4. This text differs from most of the literature about integration on supermani-
folds as it attempts to approach the idea of differentiating with respect to the odd parameters
instead of integrating with respect to them in a natural way instead of providing the definition
of a Zs-integral without any further explanation.

Let V' C N be another Zs-coordinate domain of N that contains the support of o and
denote the Zj-coordinates of N M =Y by v = (y,n). According to the above definition the
integral of o over A/ can thus be expressed as

o= [100aw) = [ neendw @ ope-onlatnn) = [ ' o).



ol

In order to prove that |, v O is coordinate-independent we need to show that

/M 2001 (1) = / 2)g(v). (3.4.9)

If ®,, = (¢, ¢*) : U — V, where restrictions are omitted for the sake of simplicity, denotes the
transformation from p- to v-coordinates then (3.4.5) implies that

f(u) = Zy Ber(Zy Jac @) 8" (g(v))

so that the statement (3.4.9) that has to be proved becomes

/V Q)g(v) = /M 12(40))Zs Ber(Zs Jac B,,,)6" (g(v) (3.4.10)

This result is called coordination transformation theorem in the Z,-Berezinian-integral and its
proof is based on the following fundamental observation: If (3.4.10) holds for the coordinate
transformations ®,, : Y — V and ¥,,, : ¥V — W then it holds for ¥, o ®,, . This is the case
since

/ [Q(w)]h(w) :/[Q(V)]ZQ Ber(Zs Jac W,,,)Y* (h(w))

w %
_ /M (1)) Zs Ber(Zs Jac B, - & (Zo Ber(Z Jac W,0.)) - 6° (1" (h(w))
- /u [2(1)]Zs Ber(Zs Jac(Wye, 0 8,.)) - (67 007 (h(w))

where the first and second equalities follow from the coordinate transformation theorem for
v, and for @, respectively and the third equality is based on the same cosideration as the
equality of (3.4.6) and (3.4.7) above. This observation reduces the proof of (3.4.10) to showing
that every Zs-coordinate-transformation ® can be decomposed in n types of simple coordinate
transformations @y, ..., ®,, for some n € N and proving that (3.4.10) holds for each of the @, .

3.4.3 Integration on Z3-manifolds

Let N' = (N, Oy) be a Z3-manifold of dimension 1|(1, 1, 1) with oriented base, consider a
Z3-Berezinian-section

o € (Z2Ber Q'N)(N)
that is compactly supported in a Z3-coordinate-domain U C N and assume that N o is iso-
morphic to the Z3-domain U with Z3-coordinates u = (x, y, &, 7). Then o locally reads as

ol, = Qw]f (k)

= [dz[y] © dy[y] ® O © O] f(z, y, &, m)
= [dz © dy ® 0,0¢] f(z, y, & n),

where the change of notation between the second to last and the last line is due to the fact
that the partial derivatives J; and 0, commute with each other and the differentials dz and
dy commute with each other whether we shift their degree by one of the two possible values of
gamma or not. The integral of o over N is given by

| o= [ o= [100106) = [ a0 aye 0,005 v. &0
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and we need an idea for the definition of the integral on the right-hand side. The above discus-
sion of Zy-integrals suggests differentiating f(z, y, &, n) with respect to the odd parameters £
and 7, which leads to the following integral with respect to the standard variable = and with
respect to the formal parameter y:

[dz © dy ® 0,0¢|f(x, y, &, n) == [ dx | dy 0,0¢f(z, y, {, ) = [ do [ dy C>Of (z)y* .
I f o [ v foe v 2

From this expression we would like to obtain an integral of a smooth compactly supported
function in x with respect to x that we can define as in standard differential geometry. For any
¢ € [0, 0o) we have fi1, € C°(U) and therefore, for any ¢ € [0, 00), setting

[ v S funtast = futa)

allows us to define a Lebesgue integral as in the Zy-case. One could argue that since dy is in the
space that is dual to the space d¢ and 9, belong to and we chose the coefficient of the highest
degree term in £n we should now choose the coefficient of the lowest degree term in y. This

means we set -
/dx/dy > fur()y ZI/dI firo(z),
k=0 U

where the integral on the right-hand side is the Lebesge integral over the subset of R? that is
isomorphic to U .

To validate this idea for the integral of a Z2-Berezinian-section over a Z3-manifold we
have to prove coordinate-independence, i.e. the Z3-analogue to (3.4.10). However, there is a
fundamental problem that impedes a straightforward implementation of our idea and in the
following we will illustrate this problem by means of an example.

Let
N =yHeLy — (]o, 1], fﬁm,n)

be a Z2-manifold equipped with global coordinate systems y = (z, y, £, n) and v = (X, Y, =, [1])
and consider the coordinate transformation ®,, given by

X=x

Yy =

r=ytn (3.4.11)
==¢

M=mn.

Furthermore, pick a function a € C2°( |0, 1[ ) that verifies fol dr a(r) = 1 and define a Z3-
Berezinian-section

o € (Z3Ber ' N)(]0, 1] ),
compactly supported in |0, 1[, by setting

o = [)]g(v) = [AX, Y. Z, W]a(X)Y .

Assuming that the coordinate-independence theorem holds for the integral of o over N we

" /N o= /u QW)glv) = A} 0=
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and

[ o= [ 190012 Be(@ 12 9,.)6(0(0)

1 010 O
0

:/U[Q(,u)]ZgBer 5 é 717 g (a(z)y + az)€n)
0 0]0 1

= / dr a(z) =1,
10,1

which is a contradiction and thus means that we cannot integrate compactly supported Z3-
Berezinian-sections over Z3-manifolds in a straightforward way. More information on the mod-
ification of signs that is used in the Z2-Jacobian can be found for instance in [19], page 9.

This problem also appears in Zs-geometry, both in the approach described in this text and
in the alternative deWitt-Rogers approach. For example, using our approach to integration on
Zy-manifolds we can create a problematic situation that is similar to the one in Z3-geometry
described above as follows.

Consider the Zs-manifold
N =u"=(]o,1[, C})

with global coordinate systems pu = (z, ', €?) and v = (y, n', n*) and a coordinate transfor-
mation @, given by

y =1+
nt = ¢! (3.4.12)
n2 — 52 )

Define o € (Zy Ber Q'N)( 10, 1] ) by setting

o =[QW)]g(v) = Qy, n', )]y

Then we have

N u
and

o= [ [Un)]|Zy Ber(Zy Jac @,,) 0" (g(v))
N u
1 _52 gl
—Kﬁummﬂﬁr 0 1 0 |(z+¢&¢?

o 0 1
:/ dr1=1,
10.1]

which means that the integral [ A O 1s not coordinate-independent. Note that in this case o is
not compactly supported in |0, 1] and as stated above we can ensure coordinate-independence
when requiring the Zs-Berezinian-sections that are integrated to be compactly supported in
some coordinate domain. In Z3-geometry it does not suffice to assume o to be compactly
supported in order to avoid the problem generated by transformations of the type (3.4.11),
(3.4.12). However, there are other strategies to avoid this problem in Z2Z-geometry, two of
which will be discussed in the following.
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The first strategy comprises a reduction of the set of integrable objects. More precisely,
one can prove that if the coefficient g(v) of a Z3-Berezinian-section [Q2(v)]g(v) does not contain
the term gy00(X)Y then the coefficient f(u) of this section in any other coordinate system pu
does not contain the term fipo(x)y and refer to sections with such coefficients as compactly
supported with respect to the degree (1, 1) parameter y. It can be shown that the integral of
Z3-Berezinian-sections which are compactly supported with respect to x and with respect to y
is well-defined, see [32], page 15.

The second strategy is new and involves changing the nature of the integrable objects. This
idea comes from complex analysis.

Remark 3.4.5. Let ay,...,ay be elements in a simply connected open subset U C C and
consider a function f : U — C that is holomorphic in V := U\{ay, ...,an}, i.e. that is complex
differentiable in V. This also means that f is complex analytic in V', i.e. for each zy € V there
is a power series at zy that converges to f(z) at every point z that is close enough to zy. If v
is a positively oriented simple closed rectifiable curve in V' the residue theorem states that the
integral of f around 7 is given by

§£dz f(z) =27 S R(f. an).,
ol k

where the sum is taken over all k such that ay is inside v and R(f, ax) denotes the residue of f
at ay , which can be computed by differentiating and taking limits. The residue of f at a; can

be seen as .

2mi Jo

where 6 denotes a positively oriented simple closed rectifiable curve in V' that contains a; and
none of the other singularities. Moreover, for f defined as a Laurent series about a; , i.e. defined
as

its residue at a; is given by R(f, a;) = c_; . In particular, the integral of a Laurent series about
0 that is holomorphic in C\{0} around a positively oriented simple closed rectifiable curve =y

that contains 0 is given by
“+oo
%dz Z cpzt =2mic .
5

k=—o00

Our idea is to proceed similarly in Z32-geometry and set

/dy > fn(@)y® = fan(@).

k=—m

To implement this idea we consider a Z32-domain A = Y!0LD = (U, Cif111y) with global
coordinates p = (z, y, &, ), where U € Open(R). Denoting C7, , ;)(U) by C*°(u), a generic
superfunction f € C®(u) is given by

flp) = Z Z Frav(@)E" | ¢

k=0 \a,be{0,1}
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and we now define a generic Laurent series L € £>(u) by setting

o0

L= > | > fa@en | o,

k=-m \a,be{0,1}

where the lower bound defined by m € N is finite but not fixed. It can be verified that £°°(u)
is a Z3-commutative associative unital R-algebra. Note that dividing a superfunction by a
non-negative power of y yields a Laurent series:

+oo a, b k
Zo ( 2aveqony fran(@)E” ) y >
k 0( b {0;; ) _ Z Z fnerab(x)fanb yn c EOO(,M) )

k=—m \ a,be{0,1}

This indicates that £>°(u) is the localization of C*°(u) at the multiplicative subset P(u) =
{y™|m € N} C C*(u), where multiplicative subset refers to a multiplicatively closed subset
that contains 1. Since localizations of Z3-commutative rings such as C*(u) are similar to
localizations at commutative rings we recall the concept of localization in the commutative
context.

Remark 3.4.6. A localization of a commutative ring R at a multiplicative subset S C R can
be seen as a method to add inverses to R. More precisely, a localization of R at S is defined
as a commutative ring £ together with a ring morphism L : R — £ such that the image L(s)
of any element s € S is invertible in L.

The construction of a localization (£, L) can be done by generalizing the construction of
the rational numbers Q. First we introduce an equivalence relation ~ in R x S by setting

(r, s) ~ (1, s") = (rs' —r's)o =0

for some o € S. Denoting the equivalence class of (1, s) € R x S under ~ by = we define the
commutative ring

E::RS_I::{EM‘ER,SES}

and the ring morphism
LZRBT*—);ERS_I.

Since L(s) = £ has inverse * € RS~ for all s € S we can confirm that (RS™!, L) is a localiza-

tion of R at S'.

It can be observed that (RS™!, L) is universal in the sense that for any ring morphism
r: R — R that sends every element s € S to an invertible element in the commutative ring R
there exists a unique ring morphism u : RS~ — R such that the following diagram commutes:

R —t— RS™!
\ lu
R.

If L is injective this universal property means that for any ring morphism r : R — R valued
in a commutative ring that sends every element in S to a unit in R there exists a unique ring
morphism u that coincides with r on R .
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Continuing the implementation of the above idea from complex analysis in Z2-geometry we
consider a Z3-manifold " = (N, Oy) of dimension 1|(1, 1, 1) with oriented base manifold and
an atlas @ of Z2-coordinate-charts of AV .

Definition 3.4.7. A generalized Z3-Berezinian-section of A over N is a family

Q)] L), [2W)AW), ..

indexed by the Z3-charts in ¥ of local generalized Z3-Berezinian-sections whose coefficients
are Laurent series and satisfy the coherent transformation law

L(p) = Z3 Ber(Z3 Jac ®,,)¢* (A(v)), (3.4.13)

where @, : p = (z,y, &, n) = v = (X, Y,Z, 1) is the coordinate transformation from p to v
and

T (AW) = 3D fran(0* X)($E) (M) (6°Y ) (3.4.14)

k=—m a,b

To make sure the right-hand side of (3.4.14) is an element in £(u), is suffices to show
that (¢*Y)™! € L£>(u), which can be done, but we will not repeat the proof here. Indeed,
then (¢*Y)* € £°(u) for all negative k and the whole term indexed by k in the series over k
belongs to £(u), as the sum over a,b is a superfunction. It follows that the finite sum over
all negative k is in £>°(u) just as the series over all k, since the pullback of a superfunction
is a superfunction. Thus we actually have ¢*" (A(r)) € £2(u) and obtain that ¢*  is a ring
morphism from £2(v) to £°(u) that coincides with ¢* on C®(v).

In view of the universal property of the localization (£L*(v), L,) of C*(v) at P(r) we make
the following observation. Denoting the localization map of the localization £°(u) of C*(u)
at P(u) by L, and noting that

L,o0¢" :C(v) = LZ(n)
is a ring morphism that sends every Y* € P(v) to

(@Y)"

N

which is invertible in £%° (1) since (¢*Y)™% € L£>(u) . Hence, in view of universality, there exists
a unique ring morphism u such that the following diagram commutes:

cw(u)«\ Ly y L(v)
"
C*(p) u
~
L% ()

Since in the case of Laurent series the multiplicative subset at which we localize does not
contain any zero divisor, the localization maps are injective and we can rephrase our preceding
statement saying that there exists a unique ring morphism wu : £>*(r) — £(u) that coincides
with ¢* on C*®(v). Hence ¢* is the unique ring morphism from £ (v) to £ (u) that coincides
with ¢* on C>(v).
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We are now prepared to check that the transformation law (3.4.13) is indeed coherent. This
means that if &, : p — v and ¥,,, : ¥ — w are coordinate transformations, we must have

L(p) = Z3 Ber(Z3 Jac ©,,)¢* (Z3 Ber(Z3 Jac ¥,,)) (¢* 0 ¢ )(I(w))
= Z3Ber(Z3 Jac(V,, 0 ®,,)) (¥ 0 ¢)* (Il(w)) .
As we already know that
Z3Ber(Z5 Jac ®,,)¢* (Z3 Ber(Z3 Jac ¥,,,)) = Z3 Ber(Z3 Jac(¥,, 0 ®,,)) ,
the above equality boils down to the coherence condition

(Wop)” =¢" o9 . (3.4.15)
Although (3.4.15) is trivial when considering the pullbacks without extending them to Laurent
series, its direct verification in the case involving extensions is not obvious at all. However, we
can argue that (1o ®)*" is the unique ring morphism from £ (w) to £>°(u) that coincides with
¢* o * on C*(w) and since ¢*~ o ¢*" is a ring morphism from £>(w) to £(u) that coincides
with ¢* 0 ¢* on C*°(w) both morphims must be equal.

Finally, if ' = (N, Oy) is a Z3-manifold of dimension 1|(1, 1, 1) with oriented base, we
define the integral over N of a generalized Z3-Berezinian-section s that is compactly supported
in a Z3-coordinate-domain U C N such that A |, is isomorphic to the Z3-domain U with
coordinates p = (x, y, &, 1), by setting

/st /U[Q(u)]L(u) = /M[dx@dywnag]ux, y, &, 1) == /d:c/dy f frnn (z)y"*

k=—m

as before and setting

/dy Z fkn(@yk = ()

k=—m

motivated by the development from complex analysis discussed above so that we finally obtain

the definition
/ S5 = / dx f—lll(x);
N U

where the right-hand side denotes the Lebesgue integral of the coefficient f_11; € C°(U) with
respect to the standard coordinate x. It can be shown that this definition is coordinate-
independent as desired.

3.4.4 Outlook

Having discussed integration of compactly supported generalized Z3-Berezinian-sections over
Z3-manifolds of dimension 1|(1, 1, 1), the question arises whether this integration theory can
be extended to ‘higher’ settings. If N = (N, Q) is a Zj-manifold of dimension p|g whose ideal
sheaf is denoted as usual by J and which locally has Z-coordinates -

ILL = (m7 y’ g) = (‘,L‘17 "”xl)? y17 "'7yq0’ 517 "”gql)’

where z denotes the coordinates of degree vy, the tuple y the coordinates of even degree different
from 7 and & the coordinates of odd degree, we generalize Laurent series and end up with
generalized fractions in the sense of algebraic topology. They appear as an explicit description
of the go-th O(U)-module HY (U, O) of the J-local cohomology of O over U € Open(N) and
we can integrate the compactly supported vectors of this module. This ZJ-integration-theory
is related to Grothendieck duality and requires the use of an appropriate group of admissible
coordinate transformations that allows to work around the problematic monomials of the type
(3.4.11) and (3.4.12) discussed in Subsection 3.4.3.
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