[en] The ever increasing use of artificial intelligence (AI) methods in biomedical sciences calls for closer inter-disciplinary collaborations that transfer the domain knowledge from life scientists to computer science researchers and vice-versa. We highlight two general areas where the use of AI-based solutions designed for clinical and laboratory settings has proven problematic. These are used to demonstrate common sources of translational challenges that often stem from the differences in data interpretation between the clinical and research view, and the unmatched expectations and requirements on the result quality metrics. We outline how explicit interpretable inference reporting might be used as a guide to overcome such translational challenges. We conclude with several recommendations for safer translation of machine learning solutions into real-world settings.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VEGA MORENO, Carlos Gonzalo ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
KRATOCHVIL, Miroslav ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
SATAGOPAM, Venkata ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
SCHNEIDER, Reinhard ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Translational Challenges of Biomedical Machine Learning Solutions in Clinical and Laboratory Settings
Date de publication/diffusion :
2022
Nom de la manifestation :
International Work-Conference on Bioinformatics and Biomedical Engineering
Lieu de la manifestation :
Meloneras, Espagne
Date de la manifestation :
from 27-06-2022 to 30-06-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Bioinformatics and Biomedical Engineering
Maison d'édition :
Springer International Publishing, Cham, Inconnu/non spécifié