Contribution to collective works (Parts of books)
Finite Mixture Models for an underlying Beta distribution with an application to COVID-19 data
SCHILTZ, Jang; NOEL, Cédric
2025In Stemmler, Mark; Wiedermann, Wolfgang; Huang, Francis L. (Eds.) Dependent Data in Social Sciences Research
Peer reviewed
 

Files


Full Text
Chapter 6, final.pdf
Publisher postprint (4.44 MB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Computer science
Author, co-author :
SCHILTZ, Jang ;  University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Department of Finance (DF)
NOEL, Cédric ;  University of Luxembourg > Faculty of Science, Technology and Medecine (FSTM) ; University of Lorraine
External co-authors :
yes
Language :
English
Title :
Finite Mixture Models for an underlying Beta distribution with an application to COVID-19 data
Publication date :
October 2025
Main work title :
Dependent Data in Social Sciences Research
Author, co-author :
Stemmler, Mark;  FAU - Friedrich-Alexander-Universität Erlangen-Nürnberg > Institute of Psychology
Wiedermann, Wolfgang;  MU - University of Missouri-Columbia > Educational, School and Counseling Psychology
Huang, Francis L.;  MU - University of Missouri-Columbia > Educational, School and Counseling Psychology
Publisher :
Springer Nature, Switzerland
Edition :
Second Edition
ISBN/EAN :
978-3-031-56317-1
Pages :
127-158
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Available on ORBilu :
since 05 May 2022

Statistics


Number of views
241 (8 by Unilu)
Number of downloads
62 (3 by Unilu)

Bibliography


Similar publications



Contact ORBilu