Thèse de doctorat (Mémoires et thèses)
Machine learning force fields: towards modelling flexible molecules
VASSILEV GALINDO, Valentin
2022
 

Documents


Texte intégral
PhDThesis_VassilevGalindo.pdf
Postprint Auteur (26.62 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Force fields; Machine learning; Transition paths; Potential-energy surfaces; Interatomic interactions; Nuclear quantum effects
Résumé :
[en] Accurate modelling of chemical and physical interactions is crucial for obtaining thermodynamic and dynamical properties of any chemical system, enabling a myriad of possible applications. Many of these applications are computationally prohibitive when using advanced Computational Chemistry (CompChem) methods even on modern supercomputers. Because of this, machine learning (ML) force fields (FFs), combining the accuracy of state-of-the-art ab initio methods and the efficiency of classical FFs, are being increasingly used to reconstruct potential-energy surfaces (PESs) of molecules and solids. It is precisely the synergy of ML and CompChem that has revolutionized the field in the last decade, rising the applications to a qualitatively new level. Despite this great success, there are still many unsolved challenges. In this context, my thesis aims to investigate the capability of the existing MLFFs to provide simultaneously accurate and efficient models offering unprecedented insights into the (thermo)dynamics of realistic molecular systems. Using the examples of molecular interactions that are pervasive in (bio)chemical systems, we show a counterintuitive effect of strengthening of such interactions, as well as an unexpected prevalence of quantum nuclear fluctuations over thermal contributions at room temperature. We reveal that, when dealing with complex PESs, the predictions of state-of-the-art ML models (BPNN, SchNet, GAP, and sGDML) greatly depend on the descriptor used, and on the region of the PES being sampled. Given the varying performance of MLFFs, we present a descriptor optimization scheme improving simultaneously the accuracy and efficiency of ML models. Our results show that the commonly employed strategies followed to construct both local and global descriptors need to be improved because the optimal descriptors are a non-trivial combination of local and global features. Therefore, the work presented in this thesis highlights the potential of MLFFs to provide insights into chemical systems while, at the same time, discloses the current limitations preventing the construction of accurate MLFFs for more realistic systems. Also, I propose the optimization of the description of interactions within an ML model as a valuable step towards obtaining efficient and accurate MLFFs of large and flexible molecules. Overall, this thesis suggests that the full workflow for building ML models still needs significant elaboration. Despite this finding, the combination of CompChem and ML methods in atomistic modelling promises to enable us to solve multiple problems in different areas, such as medicine, materials design, pharmacology, energy production, environmental sciences, among others.
Disciplines :
Chimie
Physique
Auteur, co-auteur :
VASSILEV GALINDO, Valentin ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; University of Luxembourg > Department of Physics and Material Science
Langue du document :
Anglais
Titre :
Machine learning force fields: towards modelling flexible molecules
Date de soutenance :
03 mars 2022
Institution :
Unilu - University of Luxembourg, Luxembourg, Luxembourg
Intitulé du diplôme :
Docteur en Physique
Président du jury :
Membre du jury :
FODOR, Etienne 
Clementi, Cecilia
von Lilienfeld, Anatole
Focus Area :
Computational Sciences
Physics and Materials Science
Disponible sur ORBilu :
depuis le 03 mai 2022

Statistiques


Nombre de vues
290 (dont 20 Unilu)
Nombre de téléchargements
6 (dont 5 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu