VASSILEV GALINDO, V. (2022). Machine learning force fields: towards modelling flexible molecules [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/50929 |
TKATCHENKO, A., & VASSILEV GALINDO, V. (2021). Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chemical Reviews. doi:10.1021/acs.chemrev.1c00107 Peer Reviewed verified by ORBi |
CORDEIRO FONSECA, G., POLTAVSKYI, I., VASSILEV GALINDO, V., & TKATCHENKO, A. (2021). Improving molecular force fields across configurational space by combining supervised and unsupervised machine learning. Journal of Chemical Physics. doi:10.1063/5.0035530 Peer reviewed |
VASSILEV GALINDO, V., CORDEIRO FONSECA, G., POLTAVSKYI, I., & TKATCHENKO, A. (2021). Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules. Journal of Chemical Physics. doi:10.1063/5.0038516 Peer reviewed |
Huziel E. Sauceda, VASSILEV GALINDO, V., Stefan Chmiela, Klaus-Robert Müller, & TKATCHENKO, A. (2021). Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature. Nature Communications. doi:10.1038/s41467-020-20212-1 Peer Reviewed verified by ORBi |