Article (Périodiques scientifiques)
FedFog: Network-Aware Optimization of Federated Learning over Wireless Fog-Cloud System
NGUYEN, van Dinh; CHATZINOTAS, Symeon; OTTERSTEN, Björn et al.
2022In IEEE Transactions on Wireless Communications, 21 (10)
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
FedFog_Network-Aware_Optimization_of_Federated_Learning_Over_Wireless_Fog-Cloud_Systems.pdf
Postprint Auteur (2.92 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Distributed learning; edge intelligence; federated learning
Résumé :
[en] Federated learning (FL) is capable of performing large distributed machine learning tasks across multiple edge users by periodically aggregating trained local parameters. To address key challenges of enabling FL over a wireless fogcloud system (e.g., non-i.i.d. data, users’ heterogeneity), we first propose an efficient FL algorithm based on Federated Averaging (called FedFog) to perform the local aggregation of gradient parameters at fog servers and global training update at the cloud. Next, we employ FedFog in wireless fog-cloud systems by investigating a novel network-aware FL optimization problem that strikes the balance between the global loss and completion time. An iterative algorithm is then developed to obtain a precise measurement of the system performance, which helps design an efficient stopping criteria to output an appropriate number of global rounds. To mitigate the straggler effect, we propose a flexible user aggregation strategy that trains fast users first to obtain a certain level of accuracy before allowing slow users to join the global training updates. Extensive numerical results using several real-world FL tasks are provided to verify the theoretical convergence of FedFog. We also show that the proposed co-design of FL and communication is essential to substantially improve resource utilization while achieving comparable accuracy of the learning model.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
NGUYEN, van Dinh ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Duong, Trung Q.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
FedFog: Network-Aware Optimization of Federated Learning over Wireless Fog-Cloud System
Date de publication/diffusion :
2022
Titre du périodique :
IEEE Transactions on Wireless Communications
ISSN :
1536-1276
eISSN :
1558-2248
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
Titre particulier du numéro :
Machine Learning (cs.LG); Distributed, Parallel, and Cluster Computing (cs.DC)
Volume/Tome :
21
Fascicule/Saison :
10
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet européen :
H2020 - 742648 - AGNOSTIC - Actively Enhanced Cognition based Framework for Design of Complex Systems
Organisme subsidiant :
H2020
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 11 avril 2022

Statistiques


Nombre de vues
299 (dont 27 Unilu)
Nombre de téléchargements
124 (dont 11 Unilu)

citations Scopus®
 
23
citations Scopus®
sans auto-citations
20
OpenCitations
 
2
citations OpenAlex
 
20
citations WoS
 
14

Bibliographie


Publications similaires



Contacter ORBilu