Finite element methods; A posteriori error estimation; Fractional partial differential equations; Adaptive refinement methods; Bank–Weiser error estimator
Abstract :
[en] We develop a novel a posteriori error estimator for the L2 error committed by the finite ele- ment discretization of the solution of the fractional Laplacian. Our a posteriori error estimator takes advantage of the semi–discretization scheme using a rational approximation which allows to reformulate the fractional problem into a family of non–fractional parametric problems. The estimator involves applying the implicit Bank–Weiser error estimation strategy to each parametric non–fractional problem and reconstructing the fractional error through the same rational approximation used to compute the solution to the original fractional problem. We provide several numerical examples in both two and three-dimensions demonstrating the effectivity of our estimator for varying fractional powers and its ability to drive an adaptive mesh refinement strategy.
Research center :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others Mathematics
Author, co-author :
BULLE, Raphaël ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Barrera, Olga
BORDAS, Stéphane ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Chouly, Franz
HALE, Jack ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
External co-authors :
yes
Language :
English
Title :
An a posteriori error estimator for the spectral fractional power of the Laplacian
Publication date :
2023
Journal title :
Computer Methods in Applied Mechanics and Engineering
Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Karniadakis, G.E., What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 00219991, 404, 2020, 109009, 10.1016/j.jcp.2019.109009.
Bonito, A., Borthagaray, J.P., Nochetto, R.H., Otárola, E., Salgado, A.J., Numerical methods for fractional diffusion. Comput. Vis. Sci. 1432-9360, 19(5–6), 2018, 19–46, 10.1007/s00791-018-0289-y.
Carlson, M., Kirby, R.M., Sundar, H., A scalable framework for solving fractional diffusion equations. Proc. 34th ACM Int. Conf. Supercomput., 2020, ACM, New York, NY, USA 9781450379830, 1–11, 10.1145/3392717.3392769.
Defterli, O., D'Elia, M., Du, Q., Gunzburger, M., Lehoucq, R., Meerschaert, M.M., Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 1314-2224, 2015, 1689–1699, 10.1515/fca-2015-0023.
Duo, S., Wang, H., Zhang, Y., A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discret. Contin. Dyn. Syst. - B 1553-524X, 2019, 231–256, 10.3934/dcdsb.2018110.
Nochetto, R.H., Otárola, E., Salgado, A.J., A PDE approach to fractional diffusion in general domains: A priori error analysis. Found. Comput. Math. 1615-3375, 15(3), 2015, 733–791, 10.1007/s10208-014-9208-x.
Bonito, A., Wei, P., Electroconvection of thin liquid crystals: Model reduction and numerical simulations. J. Comput. Phys. 00219991, 405, 2020, 109140, 10.1016/j.jcp.2019.109140.
Weiss, C.J., van Bloemen Waanders, B.G., Antil, H., Fractional operators applied to geophysical electromagnetics. Geophys. J. Int. 0956-540X, 2019, 1242–1259, 10.1093/gji/ggz516.
Ainsworth, M., Mao, Z., Analysis and approximation of a fractional Cahn–Hilliard equation. SIAM J. Numer. Anal. 0036-1429, 55(4), 2017, 1689–1718, 10.1137/16M1075302.
Akagi, G., Schimperna, G., Segatti, A., Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations. J. Differ. Equ. 00220396, 261(6), 2016, 2935–2985, 10.1016/j.jde.2016.05.016.
Du, Q., Yang, J., Zhou, Z., Time-fractional Allen–Cahn equations: Analysis and numerical methods. J. Sci. Comput. 0885-7474, 2020, 42, 10.1007/s10915-020-01351-5.
Caputo, M., Models of flux in porous media with memory. Water Resour. Res. 00431397, 36(3), 2000, 693–705, 10.1029/1999WR900299.
Barrera, O., A unified modelling and simulation for coupled anomalous transport in porous media and its finite element implementation. Comput. Mech., 2021, 1–16.
Bulle, R., Alotta, G., Marchiori, G., Berni, M., Lopomo, N.F., Zaffagnini, S., Bordas, S.P.A., Barrera, O., The human meniscus behaves as a functionally graded fractional porous medium under confined compression conditions. Appl. Sci. 2076-3417, 11(20), 2021, 9405, 10.3390/app11209405.
Bonito, A., Nazarov, M., Numerical simulations of surface quasi-geostrophic flows on periodic domains. SIAM J. Sci. Comput. 1064-8275, 43(2), 2021, B405–B430, 10.1137/20M1342616.
Bolin, D., Kirchner, K., Kovács, M., Numerical solution of fractional elliptic stochastic PDEs with spatial white noise. IMA J. Numer. Anal. 0272-4979, 40(2), 2020, 1051–1073, 10.1093/imanum/dry091.
Lindgren, F., Rue, H., Lindström, J., An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 13697412, 73(4), 2011, 423–498, 10.1111/j.1467-9868.2011.00777.x.
Atangana, A., Fractional operators and their applications. Fract. Oper. with Constant Var. Order with Appl. to Geo-Hydrology, 2018, Elsevier, 79–112, 10.1016/B978-0-12-809670-3.00005-9.
Caputo, M., Linear models of dissipation whose Q is almost frequency independent–II. Geophys. J. Int. 0956-540X, 13(5), 1967, 529–539, 10.1111/j.1365-246X.1967.tb02303.x.
Ainsworth, M., Glusa, C., Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Engrg. 00457825, 327, 2017, 4–35, 10.1016/j.cma.2017.08.019.
Ainsworth, M., Glusa, C., Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains. Contemp. Comput. Math. - A Celebr. 80th Birthd. Ian Sloan, Vol. 40, 2018, Springer International Publishing, Cham, 17–57, 10.1007/978-3-319-72456-0_2.
Aceto, L., Bertaccini, D., Durastante, F., Novati, P., Rational krylov methods for functions of matrices with applications to fractional partial differential equations. J. Comput. Phys. 00219991, 396, 2019, 470–482, 10.1016/j.jcp.2019.07.009.
Higham, N.J., Lin, L., An improved Schur–Padé algorithm for fractional powers of a matrix and their fréchet derivatives. SIAM J. Matrix Anal. Appl. 0895-4798, 34(3), 2013, 1341–1360, 10.1137/130906118.
Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., Vinagre Jara, B.M., Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 00219991, 228(8), 2009, 3137–3153, 10.1016/j.jcp.2009.01.014.
Ainsworth, M., Glusa, C., Hybrid finite element–spectral method for the fractional Laplacian: Approximation theory and efficient solver. SIAM J. Sci. Comput. 1064-8275, 40(4), 2018, A2383–A2405, 10.1137/17M1144696 URL https://epubs.siam.org/doi/10.1137/17M1144696.
Antil, H., Otárola, E., A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 0363-0129, 53(6), 2015, 3432–3456, 10.1137/140975061.
Caffarelli, L., Silvestre, L., An extension problem related to the fractional Laplacian. Commun. Partial Differential Equations 0360-5302, 32(8), 2007, 1245–1260, 10.1080/03605300600987306.
Chen, L., Nochetto, R.H., Otárola, E., Salgado, A.J., A PDE approach to fractional diffusion: A posteriori error analysis. J. Comput. Phys. 00219991, 293, 2015, 339–358, 10.1016/j.jcp.2015.01.001.
Faustmann, M., Karkulik, M., Melenk, J.M., Local convergence of the FEM for the integral fractional Laplacian. 2020, 1–20 arXiv, URL http://arxiv.org/abs/2005.14109.
Stinga, P.R., Torrea, J.L., Extension problem and Harnack's inequality for some fractional operators. Commun. Partial Differential Equations 0360-5302, 35(11), 2010, 2092–2122, 10.1080/03605301003735680.
Cusimano, N., del Teso, F., Gerardo-Giorda, L., Numerical approximations for fractional elliptic equations via the method of semigroups. ESAIM Math. Model. Numer. Anal. 0764-583X, 54(3), 2020, 751–774, 10.1051/m2an/2019076.
Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G., Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal. 0036-1429, 2018, 1243–1272, 10.1137/17M1128010.
Stinga, P.R., User's guide to the fractional Laplacian and the method of semigroups. Fract. Differ. Equations, 2019, De Gruyter, 235–266, 10.1515/9783110571660-012.
Aceto, L., Novati, P., Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput. 1064-8275, 39(1), 2017, A214–A228, 10.1137/16M1064714.
Hofreither, C., A unified view of some numerical methods for fractional diffusion. Comput. Math. Appl. 08981221, 80(2), 2020, 332–350, 10.1016/j.camwa.2019.07.025.
Bonito, A., Lei, W., Pasciak, J.E., Numerical approximation of space-time fractional parabolic equations. Comput. Methods Appl. Math. 1609-9389, 17(4), 2017, 679–705, 10.1515/cmam-2017-0032.
Bonito, A., Lei, W., Pasciak, J.E., The approximation of parabolic equations involving fractional powers of elliptic operators. J. Comput. Appl. Math. 03770427, 315, 2017, 32–48, 10.1016/j.cam.2016.10.016.
Bonito, A., Lei, W., Pasciak, J.E., On sinc quadrature approximations of fractional powers of regularly accretive operators. J. Numer. Math. 1570-2820, 27(2), 2019, 57–68, 10.1515/jnma-2017-0116.
Bonito, A., Pasciak, J.E., Numerical approximation of fractional powers of elliptic operators. Math. Comp. 0025-5718, 84(295), 2015, 2083–2110, 10.1090/S0025-5718-2015-02937-8.
Borthagaray, J., Li, W., Nochetto, R.H., Linear and nonlinear fractional elliptic problems. 2020, 69–92, 10.1090/conm/754/15145.
Gavrilyuk, I.P., Hackbusch, W., Khoromskij, B.N., Data-sparse approximation to a class of operator-valued functions. Math. Comp. 0025-5718, 2004, 681–709, 10.1090/S0025-5718-04-01703-X.
Danczul, T., Schöberl, J., A reduced basis method for fractional diffusion operators I. 2019, 1–19 URL http://arxiv.org/abs/1904.05599.
Danczul, T., Schöberl, J., A reduced basis method for fractional diffusion operators II. J. Numer. Math. 1570-2820, 29(4), 2021, 269–287, 10.1515/jnma-2020-0042.
Dinh, H., Antil, H., Chen, Y., Cherkaev, E., Narayan, A., Model reduction for fractional elliptic problems using Kato's formula. Math. Control Relat. Fields 2156-8499, 2021, 10.3934/mcrf.2021004.
Bonito, A., Lei, W., Pasciak, J.E., Numerical approximation of the integral fractional Laplacian. Numer. Math. 0029-599X, 142(2), 2019, 235–278, 10.1007/s00211-019-01025-x.
D'Elia, M., Gunzburger, M., The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 08981221, 2013, 1245–1260, 10.1016/j.camwa.2013.07.022.
Chen, H., The Dirichlet elliptic problem involving regional fractional Laplacian. J. Math. Phys. 0022-2488, 59(7), 2018, 071504, 10.1063/1.5046685.
Banjai, L., Melenk, J.M., Nochetto, R.H., Otárola, E., Salgado, A.J., Schwab, C., Tensor FEM for spectral fractional diffusion. Found. Comput. Math. 1615-3375, 19(4), 2019, 901–962, 10.1007/s10208-018-9402-3.
Meidner, D., Pfefferer, J., Schürholz, K., Vexler, B., hp-Finite elements for fractional diffusion. SIAM J. Numer. Anal. 0036-1429, 56(4), 2018, 2345–2374, 10.1137/17M1135517.
Kwaśnicki, M., Ten equivalent definitions of the fractional laplace operator. Fract. Calc. Appl. Anal. 1311-0454, 20(1), 2017, 7–51, 10.1515/fca-2017-0002.
Harizanov, S., Lazarov, R., Margenov, S., Marinov, P., Vutov, Y., Optimal solvers for linear systems with fractional powers of sparse SPD matrices. Numer. Linear Algebra Appl. 10705325, 25(5), 2018, e2167, 10.1002/nla.2167.
Acosta, G., Borthagaray, J.P., A fractional Laplace equation: Regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 0036-1429, 55(2), 2017, 472–495, 10.1137/15M1033952.
Grubb, G., Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators. Adv. Math. (N. Y). 00018708, 268, 2015, 478–528, 10.1016/j.aim.2014.09.018.
Banjai, L., Melenk, J.M., Schwab, C., Exponential convergence of hp FEM for spectral fractional diffusion in polygons. 2020, 1–37 arXiv.
Bordas, S.P., Natarajan, S., Menk, A., Partition of Unity Methods. 2016, Wiley-Blackwell 978-0470667088, 300.
Nochetto, R.H., von Petersdorff, T., Zhang, C.-S., A posteriori error analysis for a class of integral equations and variational inequalities. Numer. Math. 0029-599X, 116(3), 2010, 519–552, 10.1007/s00211-010-0310-y.
Zhao, X., Hu, X., Cai, W., Karniadakis, G.E., Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput. Methods Appl. Mech. Engrg. 00457825, 325, 2017, 56–76, 10.1016/j.cma.2017.06.017.
Faustmann, M., Melenk, J.M., Praetorius, D., Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian. Math. Comp. 0025-5718, 90(330), 2021, 1557–1587, 10.1090/mcom/3603.
Bank, R.E., Weiser, A., Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 00255718, 44(170), 1985, 283, 10.2307/2007953.
Bulle, R., Hale, J.S., Lozinski, A., Bordas, S.P., Chouly, F., Hierarchical a posteriori error estimation of bank–weiser type in the fenics project. Comput. Math. Appl. 08981221, 131, 2023, 103–123, 10.1016/j.camwa.2022.11.009 URL https://linkinghub.elsevier.com/retrieve/pii/S0898122122004722.
Habera, M., Hale, J.S., Richardson, C., Ring, J., Rognes, M., Sime, N., Wells, G.N., Fenicsx: A sustainable future for the FEnics project. 2020, 10.6084/m9.figshare.11866101.v1.
Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N., The fenics project version 1.5. Arch. Numer. Softw., 2015, 10.11588/ans.2015.100.20553.
Ainsworth, M., Oden, J.T., A Posteriori Error Estimation in Finite Element Analysis Pure and Applied Mathematics (New York), 2000, John Wiley & Sons, Inc., Hoboken, NJ, USA 9781118032824, xx+240, 10.1002/9781118032824.
Carstensen, C., Merdon, C., Estimator competition for poisson problems. J. Comput. Math. 02549409, 28(3), 2010, 309–330, 10.4208/jcm.2009.10-m1010.
Verfürth, R., Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation. Numer. Math. 0029-599X, 78(3), 1998, 479–493, 10.1007/s002110050322.
Allaire, G., Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation Numerical mathematics and scientific computation, 2007, Oxford University Press, Oxford; New York ISBN: 978-0-19-920521-9 978-0-19-920522-6. OCLC: ocm82671667.
Aceto, L., Novati, P., Rational approximations to fractional powers of self-adjoint positive operators. Numer. Math. 0029-599X, 143(1), 2019, 1–16, 10.1007/s00211-019-01048-4.
Gavrilyuk, I.P., Hackbusch, W., Khoromskij, B.N., Data-sparse approximation to the operator-valued functions of elliptic operator. Math. Comp. 0025-5718, 2003, 1297–1325, 10.1090/S0025-5718-03-01590-4.
Vabishchevich, P.N., Approximation of a fractional power of an elliptic operator. Numer. Linear Algebra Appl. 1070-5325, 27(3), 2020, 1–17, 10.1002/nla.2287.
Balakrishnan, A.V., Fractional powers of closed operators and the semigroups generated by them. Pacific J. Math. 0030-8730, 10(2), 1960, 419–437, 10.2140/pjm.1960.10.419.
Bonito, A., Pasciak, J.E., Numerical approximation of fractional powers of regularly accretive operators. IMA J. Numer. Anal. 0272-4979, 2016, drw042, 10.1093/imanum/drw042.
Hofreither, C., An algorithm for best rational approximation based on barycentric rational interpolation. Numer. Algorithms 1017-1398, 88(1), 2021, 365–388, 10.1007/s11075-020-01042-0.
Stahl, H.R., Best uniform rational approximation of xα on [0,1]. Acta Math. 190:2 (2003), 241–306, 10.1007/BF02392691.
Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M., Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: Conforming approximations. SIAM J. Numer. Anal. 0036-1429, 55(5), 2017, 2228–2254, 10.1137/15M1038633.
Acosta, G., Bersetche, F.M., Borthagaray, J.P., A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 08981221, 74(4), 2017, 784–816, 10.1016/j.camwa.2017.05.026.
Borthagaray, J.P., Leykekhman, D., Nochetto, R.H., Local energy estimates for the fractional Laplacian. SIAM J. Numer. Anal. 0036-1429, 59(4), 2021, 1918–1947, 10.1137/20M1335509.
Dörfler, W., A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 0036-1429, 33(3), 1996, 1106–1124, 10.1137/0733054.
Plaza, A., Carey, G.F., Local refinement of simplicial grids based on the skeleton. Appl. Numer. Math. 01689274, 32(2), 2000, 195–218, 10.1016/S0168-9274(99)00022-7.
Collier, N., Haji-Ali, A.-L., Nobile, F., von Schwerin, E., Tempone, R., A continuation multilevel Monte Carlo algorithm. BIT Numer. Math. 55:2 (2015), 399–432, 10.1007/s10543-014-0511-3 (ISSN: 0006-3835, 1572-9125). URL http://link.springer.com/10.1007/s10543-014-0511-3.
Falgout, R.D., Yang, U.M., Hypre: A library of high performance preconditioners. Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J., (eds.) Comput. Science — ICCS 2002 Lecture Notes in Computer Science, vol. 2331, 2002, Springer Berlin Heidelberg, 632–641, 10.1007/3-540-47789-6_66 ISBN: 978-3-540-43594-5 978-3-540-47789-1.
Bulle, R., Hale, J.S., Fenics error estimation (fenics-EE). 2019, 10.6084/m9.figshare.10732421.v2.
Bulle, R., Chouly, F., Hale, J.S., Lozinski, A., Removing the saturation assumption in Bank–Weiser error estimator analysis in dimension three. Appl. Math. Lett. 08939659, 107, 2020, 106429, 10.1016/j.aml.2020.106429.
Geuzaine, C., Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer. Methods Engrg. 1097-0207, 79(11), 2009, 1309–1331, 10.1002/nme.2579 URL http://onlinelibrary.wiley.com/doi/10.1002/nme.2579/abstract.