Article (Scientific journals)
An a posteriori error estimator for the spectral fractional power of the Laplacian
BULLE, Raphaël; Barrera, Olga; BORDAS, Stéphane et al.
2023In Computer Methods in Applied Mechanics and Engineering, 407, p. 115943
Peer Reviewed verified by ORBi
 

Files


Full Text
2202.05810.pdf
Publisher postprint (5.76 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Finite element methods; A posteriori error estimation; Fractional partial differential equations; Adaptive refinement methods; Bank–Weiser error estimator
Abstract :
[en] We develop a novel a posteriori error estimator for the L2 error committed by the finite ele- ment discretization of the solution of the fractional Laplacian. Our a posteriori error estimator takes advantage of the semi–discretization scheme using a rational approximation which allows to reformulate the fractional problem into a family of non–fractional parametric problems. The estimator involves applying the implicit Bank–Weiser error estimation strategy to each parametric non–fractional problem and reconstructing the fractional error through the same rational approximation used to compute the solution to the original fractional problem. We provide several numerical examples in both two and three-dimensions demonstrating the effectivity of our estimator for varying fractional powers and its ability to drive an adaptive mesh refinement strategy.
Research center :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Mathematics
Author, co-author :
BULLE, Raphaël ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Barrera, Olga
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Chouly, Franz
HALE, Jack  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
External co-authors :
yes
Language :
English
Title :
An a posteriori error estimator for the spectral fractional power of the Laplacian
Publication date :
2023
Journal title :
Computer Methods in Applied Mechanics and Engineering
ISSN :
0045-7825
eISSN :
1879-2138
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
407
Pages :
115943
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Computational Sciences
European Projects :
H2020 - 811099 - DRIVEN - Increasing the scientific excellence and innovation capacity in Data-Driven Simulation of the University of Luxembourg
Name of the research project :
ASSIST
Funders :
University of Luxembourg - UL
CE - Commission Européenne [BE]
Available on ORBilu :
since 03 April 2022

Statistics


Number of views
204 (16 by Unilu)
Number of downloads
329 (6 by Unilu)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
1
WoS citations
 
2

Bibliography


Similar publications



Contact ORBilu