Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
Detection of fluid level in bores for batch size one assembly automation using convolutional neural network
SIMETH, Alexej; Plaßmann, Jessica; PLAPPER, Peter
2021In Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems., 632, p. 86-93
Peer reviewed
 

Documents


Texte intégral
2021_Simeth_DetectionOfFluidLevelInBores.pdf
Postprint Éditeur (691.97 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Liquid detection; Artificial Intelligence; Convolutional Neural Network; Assembly; Automation
Résumé :
[en] Increased customization and shortening product life cycles pose a challenge for automation, especially in assembly. In combination with the nature of assembly tasks, which may require high level of perception, skill, and logical thinking, these tasks are often conducted manually, especially in certain industries (e.g. furniture, power tools) or small and medium-sized enterprises. One of such tasks is the liquid level monitoring in gluing processes. Existing non-manual solutions are based on conventional and less flexible algorithms to detect the current liquid level. In production environments with highly individualized products, a need for more performant models arises. With artificial intelligence (AI) it is possible to deduct decisions from unknown multidimensional correlations in sensor data, which is a key enabler for assembly automation for products with high degree of customization. In this paper, an AI-based model is proposed to automate a gluing process in a final assembly. Images of a gluing process are taken with a camera and a convolutional neural network is used to extract images features. The features are applied to train a support vector machine classifier to identify the liquid level. The developed model is tested and validated with a Monte-Carlo-simulation and used on a demonstrator to automate a gluing process. The developed model classifies images of liquid levels with over 98% accuracy. Similar results are achieved on the demonstrator.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
SIMETH, Alexej  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Plaßmann, Jessica
PLAPPER, Peter ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Detection of fluid level in bores for batch size one assembly automation using convolutional neural network
Date de publication/diffusion :
2021
Nom de la manifestation :
IFIP International Conference on Advances in Production Management Systems
Organisateur de la manifestation :
APMS 2021
Lieu de la manifestation :
Nantes, France
Date de la manifestation :
05-09-2021 to 09-09-2021
Sur invitation :
Oui
Manifestation à portée :
International
Titre du périodique :
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems.
Maison d'édition :
Springer, Cham, Allemagne
Volume/Tome :
632
Pagination :
86-93
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 29 mars 2022

Statistiques


Nombre de vues
198 (dont 13 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
1
OpenCitations
 
1
citations OpenAlex
 
3
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu