Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Parallel Multi-Physics Simulation of Biomass Furnace and Cloud-based Workflow for SMEs
BESSERON, Xavier; Rusche, Henrik; PETERS, Bernhard
2022In Practice and Experience in Advanced Research Computing (PEARC '22)
Peer reviewed
 

Documents


Texte intégral
article.pdf
Postprint Auteur (2.18 MB)
Télécharger
Annexes
Parallel Multi-Physics Simulation of Biomass Furnace and Cloud-based Workflow for SMEs-novideo.pdf
(7.09 MB)
Presentation
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Biomass combustion; Multi-physics simulation; CFD-DEM; Parallel coupling; Cloudification
Résumé :
[en] Biomass combustion is a well-established process to produce energy that offers a credible alternative to reduce the consumption of fossil fuel. To optimize the process of biomass combustion, numerical simulation is a less expensive and time-effective approach than the experimental method. However, biomass combustion involves intricate physical phenomena that must be modeled (and validated) carefully, in the fuel bed and in the surrounding gas. With this level of complexity, these simulations require the use of High-Performance Computing (HPC) platforms and expertise, which are usually not affordable for manufacturing SMEs. In this work, we developed a parallel simulation tool for the simulation of biomass furnaces that relies on a parallel coupling between Computation Fluid Dynamics (CFD) and Discrete Element Method (DEM). This approach is computation-intensive but provides accurate and detailed results for biomass combustion with a moving fuel bed. Our implementation combines FOAM-extend (for the gas phase) parallelized with MPI, and XDEM (for the solid particles) parallelized with OpenMP, to take advantage of HPC hardware. We also carry out a thorough performance evaluation of our implementation using an industrial biomass furnace setup. Additionally, we present a fully automated workflow that handles all steps from the user input to the analysis of the results. Hundreds of parameters can be modified, including the furnace geometry and fuel settings. The workflow prepares the simulation input, delegates the computing-intensive simulation to an HPC platform, and collects the results. Our solution is integrated into the Digital Marketplace of the CloudiFacturing EU project and is directly available to SMEs via a Cloud portal. As a result, we provide a cutting-edge simulation of a biomass furnace running on HPC. With this tool, we demonstrate how HPC can benefit engineering and manufacturing SMEs, and empower them to compute and solve problems that cannot be tackled without.
Centre de recherche :
LuXDEM - University of Luxembourg: Luxembourg XDEM Research Centre
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BESSERON, Xavier  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Rusche, Henrik
PETERS, Bernhard ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Parallel Multi-Physics Simulation of Biomass Furnace and Cloud-based Workflow for SMEs
Date de publication/diffusion :
juillet 2022
Nom de la manifestation :
Practice & Experience in Advanced Research Computing
Lieu de la manifestation :
Boston, MA, Etats-Unis
Date de la manifestation :
July 10-14, 2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Practice and Experience in Advanced Research Computing (PEARC '22)
Maison d'édition :
Association for Computing Machinery, New York, NY, Etats-Unis
ISBN/EAN :
9781450391610
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
URL complémentaire :
Projet européen :
H2020 - 768892 - CloudiFacturing - Cloudification of Production Engineering for Predictive Digital Manufacturing
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 27 mars 2022

Statistiques


Nombre de vues
453 (dont 140 Unilu)
Nombre de téléchargements
195 (dont 31 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu