Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Metaheuristics-based Exploration Strategies for Multi-Objective Reinforcement Learning
FELTEN, Florian; Danoy, Grégoire; TALBI, El-Ghazali et al.
2022In Proceedings of the 14th International Conference on Agents and Artificial Intelligence
Peer reviewed
 

Documents


Texte intégral
109891.pdf
Postprint Éditeur (953.07 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Reinforcement Learning; Multi-objective; Metaheuristics; Pareto Sets
Résumé :
[en] The fields of Reinforcement Learning (RL) and Optimization aim at finding an optimal solution to a problem, characterized by an objective function. The exploration-exploitation dilemma (EED) is a well known subject in those fields. Indeed, a consequent amount of literature has already been proposed on the subject and shown it is a non-negligible topic to consider to achieve good performances. Yet, many problems in real life involve the optimization of multiple objectives. Multi-Policy Multi-Objective Reinforcement Learning (MPMORL) offers a way to learn various optimised behaviours for the agent in such problems. This work introduces a modular framework for the learning phase of such algorithms, allowing to ease the study of the EED in Inner- Loop MPMORL algorithms. We present three new exploration strategies inspired from the metaheuristics domain. To assess the performance of our methods on various environments, we use a classical benchmark - the Deep Sea Treasure (DST) - as well as propose a harder version of it. Our experiments show all of the proposed strategies outperform the current state-of-the-art ε-greedy based methods on the studied benchmarks.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Parallel Computing & Optimization Group (PCOG)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
FELTEN, Florian  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
Danoy, Grégoire;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS) ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
TALBI, El-Ghazali ;  University of Lille, CNRS/CRIStAL, Inria Lille, France
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS) ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Metaheuristics-based Exploration Strategies for Multi-Objective Reinforcement Learning
Date de publication/diffusion :
2022
Nom de la manifestation :
14th International Conference on Agents and Artificial Intelligence
Date de la manifestation :
from 3-02-2022 to 5-02-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 14th International Conference on Agents and Artificial Intelligence
Maison d'édition :
SCITEPRESS - Science and Technology Publications, Online Streaming, Inconnu/non spécifié
ISBN/EAN :
978-989-758-547-0
Pagination :
662--673
Peer reviewed :
Peer reviewed
Projet FnR :
FNR14762457 - Automating The Design Of Autonomous Robot Swarms, 2020 (01/05/2021-30/04/2024) - Gregoire Danoy
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 22 février 2022

Statistiques


Nombre de vues
561 (dont 124 Unilu)
Nombre de téléchargements
4 (dont 4 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
1
citations WoS
 
1

Bibliographie


Publications similaires



Contacter ORBilu