[en] We study the Fourier transform for compactly supported distributional sections of complex homogeneous vector bundles on symmetric spaces of non-compact type X = G/K. We prove a characterisation of their range. In fact, from Delorme’s Paley-Wiener theorem for compactly supported smooth functions on a real reductive group of Harish-Chandra class, we deduce topological Paley-Wiener and Paley-Wiener- Schwartz theorems for sections.
Précision sur le type de document :
Compte rendu
Disciplines :
Mathématiques
Auteur, co-auteur :
PALMIROTTA, Guendalina ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
OLBRICH, Martin ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A topological Paley-Wiener-Schwartz Theorem for sections of homogeneous vector bundles on G/K