Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets 2021.12.22.473795
HICKL, Oskar; TEIXEIRA QUEIROS, Pedro; WILMES, Paul et al.
2021
 

Documents


Texte intégral
2021.12.22.473795v1.full.pdf
Preprint Auteur (807.67 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
binning; metagenomic reconstructed genomes; metagenomics
Résumé :
[en] The reconstruction of genomes is a critical step in genome-resolved metagenomics as well as for multi-omic data integration from microbial communities. Here, we present binny, a binning tool that produces high-quality metagenome-assembled genomes from both contiguous and highly fragmented genomes. Based on established metrics, binny outperforms existing state-of-the-art binning methods and finds unique genomes that could not be detected by other methods.binny uses k-mer-composition and coverage by metagenomic reads for iterative, non-linear dimension reduction of genomic signatures as well as subsequent automated contig clustering with cluster assessment using lineage-specific marker gene sets.When compared to five widely used binning algorithms, binny recovers the most near-complete (\>95 pure, \>90 complete) and high-quality (\>90 pure, \>70 complete) genomes from simulated data sets from the Critical Assessment of Metagenome Interpretation (CAMI) initiative, as well as from a real-world benchmark comprised of metagenomes from various environments. binny is implemented as Snakemake workflow and available from https://github.com/a-h-b/binny.Competing Interest StatementThe authors have declared no competing interest.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
- Luxembourg Centre for Systems Biomedicine (LCSB): Eco-Systems Biology (Wilmes Group)
Disciplines :
Génétique & processus génétiques
Sciences de l’environnement & écologie
Auteur, co-auteur :
HICKL, Oskar ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
TEIXEIRA QUEIROS, Pedro ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
WILMES, Paul ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
MAY, Patrick  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Heintz-Buschart, Anna
Langue du document :
Anglais
Titre :
binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets 2021.12.22.473795
Date de publication/diffusion :
23 décembre 2021
Maison d'édition :
Cold Spring Harbor Laboratory
Focus Area :
Systems Biomedicine
Projet FnR :
FNR11823097 - Microbiomes In One Health, 2017 (01/09/2018-28/02/2025) - Paul Wilmes
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 24 janvier 2022

Statistiques


Nombre de vues
371 (dont 27 Unilu)
Nombre de téléchargements
202 (dont 1 Unilu)

OpenCitations
 
3
citations OpenAlex
 
3

Bibliographie


Publications similaires



Contacter ORBilu