Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
IML-GCN: Improved Multi-Label Graph Convolutional Network for Efficient yet Precise Image Classification
SINGH, Inder Pal; OYEDOTUN, Oyebade; GHORBEL, Enjie et al.
2022In AAAI-22 Workshop Program-Deep Learning on Graphs: Methods and Applications
Peer reviewed
 

Documents


Texte intégral
AAAI_IML_GCN__Camera_ready_.pdf
Postprint Auteur (1.87 MB)
This work was funded by the Luxembourg National Research Fund (FNR), under the project reference BRIDGES2020/IS/14755859/MEET-A/Aouada
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Vision; Graph Convolutional Network; Multi-label Image Classification; Machine Learning; Deep Learning; Artificial Intelligence
Résumé :
[en] In this paper, we propose the Improved Multi-Label Graph Convolutional Network (IML-GCN) as a precise and efficient framework for multi-label image classification. Although previous approaches have shown great performance, they usually make use of very large architectures. To handle this, we propose to combine the small version of a newly introduced network called TResNet with an extended version of Multi-label Graph Convolution Networks (ML-GCN); therefore ensuring the learning of label correlation while reducing the size of the overall network. The proposed approach considers a novel image feature embedding instead of using word embeddings. In fact, the latter are learned from words and not images making them inadequate for the task of multi-label image classification. Experimental results show that our framework competes with the state-of-the-art on two multi-label image benchmarks in terms of both precision and memory requirements.
Centre de recherche :
SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SINGH, Inder Pal  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
OYEDOTUN, Oyebade ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
GHORBEL, Enjie  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
IML-GCN: Improved Multi-Label Graph Convolutional Network for Efficient yet Precise Image Classification
Date de publication/diffusion :
février 2022
Nom de la manifestation :
AAAI Conference on Artificial Intelligence Workshops
Organisateur de la manifestation :
Association for the Advancement of Artificial Intelligence
Lieu de la manifestation :
Vancouver, Canada
Date de la manifestation :
from 22-02-2022 to 01-03-2022
Manifestation à portée :
International
Titre du périodique :
AAAI-22 Workshop Program-Deep Learning on Graphs: Methods and Applications
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Organisme subsidiant :
FNR - Fonds National de la Recherche
Commentaire :
This work was funded by the Luxembourg National Research Fund (FNR), under the project reference BRIDGES2020/IS/14755859/MEET-A/Aouada.
Disponible sur ORBilu :
depuis le 10 janvier 2022

Statistiques


Nombre de vues
802 (dont 56 Unilu)
Nombre de téléchargements
539 (dont 29 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu