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Abstract

In this paper, we propose the Improved Multi-Label Graph
Convolutional Network (IML-GCN) as a precise and efficient
framework for multi-label image classification. Although pre-
vious approaches have shown great performance, they usually
make use of very large architectures. To handle this, we pro-
pose to combine the small version of a newly introduced net-
work called TResNet with an extended version of Multi-label
Graph Convolution Networks (ML-GCN); therefore ensur-
ing the learning of label correlation while reducing the size
of the overall network. The proposed approach considers a
novel image feature embedding instead of using word embed-
dings. In fact, the latter are learned from words and not im-
ages making them inadequate for the task of multi-label im-
age classification. Experimental results show that our frame-
work competes with the state-of-the-art on two multi-label
image benchmarks in terms of both precision and memory
requirements.

Introduction
Multi-label image classification is the task of predicting a
set of labels corresponding to objects, attributes or other en-
tities present in an image. It is an active research topic in
computer vision mainly due to its numerous fields of appli-
cation such as human attribute recognition (Li et al. 2016),
scene recognition (Shao et al. 2015, 2016) and multi-object
recognition (Kang et al. 2016; Bell et al. 2016). While clas-
sical image classification methods predict only one label per
image, multi-label image classification aims at predicting a
set of objects (or labels) present in a given image.

In the literature, multi-label prediction approaches can be
classified into two main categories. The first class of meth-
ods generally learns a one-stream Deep Neural Network
(DNN) for multiple binary classification tasks, without in-
tegrating any prior knowledge in the architecture design as
in (He et al. 2016; Huang et al. 2017; Ridnik et al. 2021b).
We refer to these approaches as direct methods. Although di-
rect methods have been shown to achieve high performance
as in (Ridnik et al. 2021b), they generally necessitate the

*This work was funded by the Luxembourg Na-
tional Research Fund (FNR), under the project reference
BRIDGES2020/IS/14755859/MEET-A/Aouada.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: a) Image samples with multiple labels, b) repre-
sentation of graph nodes using word embeddings and, c) our
proposed embeddings using learned image-based latent rep-
resentation.

use of multiple layers to work effectively. This leads to a
high memory consumption; therefore restricting their appli-
cability in a memory-constrained context. In contrast to the
latter, the second category of approaches, that we call indi-
rect methods, takes advantage of the prior knowledge related
to the correlations existing among different objects present
in an image (Chen et al. 2019b; Lanchantin et al. 2021; Zhu
et al. 2017a; Wang et al. 2016). This is intuitive when one
considers that in real-life some combinations of objects are
more likely to appear together than others. For instance, it is
extremely likely for a racket and person to appear together,
than a racket and a dog. Indirect methods usually extend di-
rect approaches by adding a subnetwork that models the dif-



ferent label relationships. Intuitively, one would think that
using these data-driven approaches would allow obtaining a
model with a reduced number of parameters. Nonetheless,
it has been noted that most of these methods present a high
number of parameters or reduce the memory requirements at
the cost of a decrease in terms of precision. In this paper, our
assumption is that finding the good combination between di-
rect and indirect architectures will enable us achieving com-
petitive performance, while reducing the size of the model.

For this reason, we design a new framework termed
the Improved Multi-label Graph Convolutional Network
(IML-GCN) that simultaneously considers the newly in-
troduced direct approach called TResNet (Ridnik et al.
2021b) and an indirect model termed the Image Feature
Embeddings-based Graph Convolutional Network (IFE-
GCN), which extends the graph subnetwork of the Multi-
label Graph Convolutional Network (ML-GCN) introduced
in (Chen et al. 2019b). TResNet is chosen given its impres-
sive performance in terms of precision even when reducing
the number of layers, while an improved version of ML-
GCN is considered given its relatively low memory con-
sumption. ML-GCN is one of the most popular works using
graphs for modeling the label dependencies. Each label is
represented by a node while the relationship between labels
is modeled using weighted edges. Then, GLOVE word em-
beddings (Pennington, Socher, and Manning 2014) are used
as node features. Unfortunately, this might lead to an incon-
stancy since the GCN is used to create binary classifiers that
takes image features as input that are extracted from a sec-
ond network. In fact, we recall that GLOVE has been ini-
tially designed to represent words with vectors in the field
of Natural Language Processing (NLP), while visual object
features are by nature different.

To overcome that, we propose to replace the word embed-
dings by novel image embeddings which are more mean-
ingful in this problem of multi-label image classification, as
illustrated in Figure 1. More specifically, our image embed-
dings are computed using label-wise image representations
that are extracted by a state-of-the-art image feature extrac-
tor. Figure 2 shows an overview of the proposed framework.
Its relevance in terms of precision and number of parameters
with respect to the state-of-the-art is shown by performing
experiments on two well-known datasets.

The organization of the remaining sections of this paper
is as follows. Background and Problem Statement intro-
duces the concept of GCN with an overview of the GCN-
based approach ML-GCN (Chen et al. 2019b) followed
by the problem formulation and motivation. Proposed Ap-
proach depicts the proposed framework of IML-GCN and
details the methodology for generating the image-based em-
beddings. Experiments details the different experiments,
and results discussion followed by an extensive study on
model performance. The paper is finally concluded in Con-
clusion section, which summarizes the major findings in this
work.

Background and Problem Statement
In this section, we review the concept of Graph Convolu-
tional Networks (GCN), then present an overview of the

GCN-based indirect method called ML-GCN (Chen et al.
2019b). Finally, we formulate the problem which leads to
the motivation of our proposed approach.

Graph Convolution Networks (GCN): Graph convolu-
tion networks (GCN), initially introduced in (Kipf and
Welling 2016), are the natural extension of Convolution
Neural Networks (CNNs) to graphs. In fact, classical CNNs
are designed for Euclidean structures and consequently ap-
plying them to graphs that are non-linear is not straight-
forward. Let us consider a graph G = (V,E, F 0) with
V = {v1, v2, ..., vn} the set of nodes, n the number of
nodes, E = {e1, e2, ..., em} the set of edges connecting the
nodes, m the number of edges and F 0 ∈ Rn×d the input
d-dimensional node features. Let A be the adjacency matrix
defining the weighted connectivity of nodes.

Considering F l the input features of the lth layer, the aim
of GCN is to learn a non-linear function f(.) in order to
update the node features of the next layer denoted as F l+1 ∈
Rn×d′

which can be written as,

F l+1 = f(F l, A). (1)

Using the same approach for convolution as (Kipf and
Welling 2016), we can re-write Eq. 1 as:

F l+1 = h(ÂF lW l), (2)

where W l ∈ Rd×d′
is the weight matrix to be learned and

Â ∈ Rn×n is the normalized version of A.

Multi-Label Graph Convolutional Networks (ML-GCN)
ML-GCN (Chen et al. 2019b) were among the first to use
graph Convolutional Networks in the context of multi-label
image classification for modeling the label correlations. This
architecture is composed of two main branches. The first
branch consists of a classical image representation learning
network. More precisely, the authors made use of ResNet-
101 (He et al. 2016) to generate discriminative image fea-
tures from the input image. On the other hand, the second
subnetwork consisting in a GCN attempts to model the label
correlations to generate C learned binary classifiers, with
C the number of classes. In this context, each node of the
graph represents a label. Then, the probability that two la-
bels appear together in an image is used for encoding A.
Hence, the aim of the GCN becomes to learn label features
by aggregating neighbouring features. ML-GCN (Chen et al.
2019b) use word embedding representations as input node
features denoted by FW . These node features are generated
by Glove (Pennington, Socher, and Manning 2014). Thus,
in this case, we can say that F 0 = FW . Furthermore, a re-
weighted scheme is proposed where firstly a threshold τ has
been used to filter the noisy edges resulting on:

Aij =

{
0, ifPij < τ,
1, ifPij ≥ τ

, (3)

where Pij = P (Lj |Li) is the probability of the occur-
rence of an object label Lj in an image provided that the
label Li is already present. Secondly, in order to avoid over-
smoothing, the following re-weighted scheme is used (Chen



Figure 2: Architecture of our IML-GCN approach for multi-label image classification.

et al. 2019b):

A′
ij =

{
p/

∑n
j=1 Aij , ifi ̸= j,

1− p, ifi = j
, (4)

where p determines the weights assigned to a node itself and
other correlated nodes. This means that when p → 1, the fea-
tures of the node itself are not considered. Inversely, when
p → 0, neighbouring information tends to be ignored.
This architecture aims to learn a set of inter-dependent ob-
ject classifiers which are applied to the image representa-
tions extracted from a ResNet-101. This allows to determine
whether the associated object is present in the image or not.

Problem statement
Despite the performance of ML-GCN, two main limitations
can be noted. First, the backbone network for image rep-
resentation is very deep (ResNet-101) and therefore natu-
rally induces a heavy architecture leading to high memory
computation and consumption. Second, it uses word embed-
dings generated by Glove (Pennington, Socher, and Man-
ning 2014) to represent each node (label). Unfortunately,
they might not be optimal in the context of image classifi-
cation. In fact, these embeddings have been generated for
representing words using unique vectors in the field of NLP,
while the latter are used in ML-GCN for generating binary
classifiers that take image features as input. Given the dif-
ference in nature of the two modalities (words and images),
it seems not suitable to consider word embeddings as node
features. Based on these two observations, two interesting
ideas are driving this work. (1) It would be interesting to
investigate if finding an appropriate combination between
direct and indirect networks could be a way to achieve state-
of-the-art results, while reducing the size of the network. (2)
Replacing word embeddings with meaningful image embed-
dings could help improving the results without an increase
of the parameter number.

Proposed Approach
In this section, we depict our framework called IML-GCN
for multi-label image classification. The two subnetworks of
our framework are detailed below.

Direct subnetwork: TResNet
Our first subnetwork, as shown in Figure 2, is a CNN-based
image-representation network whose aim is to extract im-
age features by using a set of convolutional blocks. More
specifically, we use TResNetM, a smaller version of TRes-
Net (Ridnik et al. 2021b), which was designed to boost
neural networks accuracy while retaining their GPU train-
ing and inference efficiency. This is in line with our objec-
tive of reducing the size of the final network. It has already
demonstrated state-of-the-art results on single and multi-
label datasets (Ridnik et al. 2021a) while maintaining a bal-
anced trade-off between speed and accuracy. However, it has
been noted that the precision drops considerably when em-
ploying the small version TResNetM, compared to TRes-
NetL. In general, the refinements on top of plain ResNet
architecture include: SpaceToDepth Stem (Sandler et al.
2019), Anti-Alias Downsampling (Lee et al. 2020), In-Place
Activated BatchNorm (Rota Bulò, Porzi, and Kontschieder
2018), Novel Block-Type Selection (Ridnik et al. 2021b)
and Optimized SE Layers (Hu, Shen, and Sun 2018).

For any given input image I , the output of this subnetwork
is a d-dimensional latent representation of the image which
is denoted by FGAP ∈ R1×d. For TResNetM specifically,
the output dimension d = 2048.

Indirect subnetwork: Image Feature
Embeddings-based Graph Convolutional Network
(IFE-GCN)
The second subnetwork consists of an improved version of
the graph subnetwork introduced in the indirect method ML-
GCN (Chen et al. 2019b). The overall architecture remains



the same as the GCN branch of the original ML-GCN, ex-
cept that we replace the input word embedding based node
representation by our proposed image-feature based embed-
dings.

As we can see in Figure 2, the output of the proposed
GCN network creates C interdependent binary classifiers in-
corporating the information of label correlations. However,
as stated earlier, word embeddings are not adapted for multi-
label image classification. Thus, the idea would be to replace
these word embeddings by relevant image embeddings that
could be sufficiently discriminative to design effective clas-
sifiers. Intuitively, the idea would be to generate a vector per
object label including relevant image features related to the
corresponding object. Below, we depict in details how these
novel image embeddings are computed.

Image feature embeddings: Assuming N is the total
number of training samples in a particular dataset, we ini-
tialize the CNN model, i.e. TResNetM, using the weights
pre-trained on the ImageNet dataset. We first train the CNN
model to convergence. Once we obtain the fully-trained
weights, we make one forward pass for the N images.
More specifically, the output of the penultimate layer (GAP)
FGAP ∈ RN×d, provides d dimensional vector as learned
image-level features for each input image.

Then, using the ground-truth, we gather for each label the
set of generated features Si such that the associated object is
visible in the corresponding image. Note that i ∈ {1, ..., n}
and n is the total number of nodes or object labels. Finally,
for each label i, we compute the average of the correspond-
ing set of features FI given as:

(Fi)I = mean(Si) (5)

with FI = [(F1)I , (F2)I , ..., (Fn)I ] ∈ Rn×d.
Furthermore, since we employ the image-feature embed-

dings as inputs to the GCN, improving the signal-to-noise of
the input can facilitate the learning of robust representations
by the GCN. Therefore, we use Principal Component Anal-
ysis (PCA), which simultaneously reduces the dimension of
the image-feature embeddings from d to n such that the new
input feature matrix FPCA ∈ Rn×n. Thus, these features
are used as input to the first layer such as,

FI = FPCA (6)

Experiments
In this section, we start by presenting the implementation de-
tails. Subsequently, we present the results and discussion on
two benchmarking multi-label image recognition datasets,
which include the MS-COCO (Bell et al. 2016) and VG-
500 (Krishna et al. 2017).

Implementation details:
The Asymmetric Loss (ASL) (Ridnik et al. 2021a) is used
as our loss function. The adjacency matrix for the GCN is
computed using the same approach depicted in ML-GCN.

The hyper-parameters are empirically fixed. More specif-
ically, we set the threshold to τ = 0.1 in Eq. 3. We train the
model for 40 epochs using a multi-step learning rate sched-
uler initialized with a learning rate of 10−3 and decayed by

a factor of 0.1 at the 10, 20, and 30th epochs. For data aug-
mentation, we use the same Randaugment technique as the
baseline (Ridnik et al. 2021a) during the training. Adam is
used as optimizer (Kingma and Ba 2015) with a weight de-
cay of 5e−4.

Experimental results:
In this part, we start by comparing our approach to state-
of-the-art methods using MS-COCO and VG-500 datasets.
Subsequently, we conduct an ablation study to evaluate the
interest of the proposed contributions.

Performance on MS-COCO: The MS-COCO (Bell et al.
2016) dataset is a well-known large-scale multi-label image
dataset. It contains 122,218 images and covers 80 common
objects. Following the conventional training and evaluation
protocols for the MS-COCO dataset (Wang et al. 2020; Ge,
Yang, and Yu 2018), we report the following statistics: mean
Average Precision (mAP), average per-Class Precision (CP),
average per-Class Recall (CR), average per-Class F1-score
(CF1), the average Overall Precision (OP), average overall
recall (OR) and average Overall F1-score (OF1). We report
the results obtained for our approach using two types of set-
tings; that is, (IML-GCN with FI ) and (IML-GCN with
FPCA) using image embeddings without and with PCA re-
spectively.

Table 1 reports the quantitative results obtained on the
MS-COCO dataset. It can be clearly seen that although our
models are noticeably smaller than others, they outperform
state-of-the-art methods in terms of the mAP. Specifically,
our approach achieves an mAP of 86.62% using only 31.5M
parameters. Thus, it outperforms ML-GCN by 3.62% and re-
quires around 30% less parameters. Similarly, our approach
slightly registers higher mAP than ASL with 0.2% of in-
crease, while requesting 42% less parameters. Also, it is ob-
served that the model using the IML-GCN with PCA per-
forms better than the model without PCA in terms of mAP.
We can see an improvement of 0.8%. Moreover, it can be
noted than 2M less parameters are needed when using PCA.
Therefore, the obtained results show the interest of applying
PCA to the image feature embeddings.

Performance on VG-500: The Visual Genome
dataset (Krishna et al. 2017) is another large-scale
multi-label image dataset that contains a total of 108,077
images, which covers over thousands of categories. Given
that the distribution of the labels is quite sparse, the VG-500
subset (Chen et al. 2020) that consists of 500 most frequent
objects as categories is used. It is divided into a training set
of 98,249 training images and 10,000 test images.

In Table 2, we compare our model with recent approaches.
It can be seen that we achieve an mAP of 34.5% which is
higher than the score reported for ResNet-101 (He et al.
2016), ML-GCN (Chen et al. 2019b) and ASL (TRes-
NetM) (Ridnik et al. 2021a). We also note that ResNet101
and ML-GCN employed a larger backbone CNN network,
ResNet-101 leading to a higher number of parameters. Only
ASL uses fewer number of parameters, which is fair since
this network represents the direct backbone of our model.
It can be noted that C-Tran (Lanchantin et al. 2021) is the



Table 1: Comparisons with state-of-the-art methods on the MS-COCO dataset with n components=80 the number of the com-
ponents fixed for computing FPCA.

Method #Parameters mAP CP CR CF1 OP OR OF1
CNN-RNN (Wang et al. 2016) 66.2 M 61.2 - - - - - -
SRN (Zhu et al. 2017b) ∼48M 77.1 81.6 65.4 71.2 82.7 69.9 75.8
ResNet101 (He et al. 2016) 44.5M 77.3 80.2 66.7 72.8 83.9 70.8 76.8
Multi-Evidence (Ge, Yang, and Yu 2018) ∼47M - 80.4 70.2 74.9 85.2 72.5 78.4
ML-GCN (Chen et al. 2019b) 44.9M 83 85.1 72 78 85.8 75.4 80.3
SSGRL (Chen et al. 2019a) 92.2M 83.8 89.9 68.5 76.8 91.3 70.8 79.7
KGGR (Chen et al. 2020) ∼45M 84.3 85.6 72.7 78.6 87.1 75.6 80.9
C-Tran (Lanchantin et al. 2021) 120M 85.1 86.3 74.3 79.9 87.7 76.5 81.7
ASL (TResNetM) (Ridnik et al. 2021a) 29.5M 81.8 82.1 72.6 76.4 83.1 76.1 79.4
ASL (TResNetL) (Ridnik et al. 2021a) 53.8M 86.6 87.4 76.4 81.4 88.1 79.2 81.8
Ours (IML-GCN with FI ) 33.5M 85.9 82.7 78.9 80.5 84.6 82.1 83.3
Ours (IML-GCN with FPCA) 31.5M 86.6 78.8 82.6 80.2 79.0 85.1 81.9

Table 2: Comparisons with state-of-the-art methods on the
VG-500 dataset with n components=500 for FPCA.

Method # Parameters mAP (%)
ResNet-101 (He et al. 2016) 44.5M 30.9
ML-GCN (Chen et al. 2019b) 44.9M 32.6
ASL (TResNetM) (Ridnik et al.
2021a)

29.5M 33.6

C-Tran (Lanchantin et al. 2021)* 120M 38.4*

Ours (IML-GCN with FI ) 33.5M 34.0
Ours (IML-GCN with FPCA) 32.1M 34.5
*The model is roughly 273% larger than our proposal

only approach that outperforms our method in terms of mAP.
However, they rely on extremely large models. Indeed, the
mAP result of 38.4% obtained in (Lanchantin et al. 2021)
used a model which is roughly 273% larger than the model
that we propose in this paper, as it can deduced from Table 2.
The extremely large size of the model in (Lanchantin et al.
2021) places a limitation on its practical usefulness when
considering the high computational resource and latency it
incurs. Importantly, our proposed model that requires mod-
est computational resources and gives interesting results.

Impact of GCN input features:

This section reports the results of experiments, which were
performed to study the performance improvements obtained
using the proposed image-feature embeddings as input fea-
tures for the GCN in comparison to word embeddings. For
these experiments, the proposed framework (CNN-GCN ar-
chitecture) remains the same except that the GCN of IML-
GCN is replaced with the graph subnetwork of ML-GCN.
We report the performance improvements for three different
settings in Table 3.

Word embeddings: We use the same GCN subnetwork
proposed for ML-GCN (Chen et al. 2019b). Table 3 shows
that using the original GCN which incorporates word em-
beddings as node features lead to a visible decrease of 5%
and 1.9% in mAP on MS-COCO and VG-500, respectively.
This is expected as the used word embeddings are not rel-
evant to the task of image classification and confirms our
assumption.

Table 3: Impact of GCN input features.

Dataset Refinements mAP (%)

COCO
Word embeddings (FW ) 81.6
(+) Image based-feature embeddings (FI ) 85.9 (+4.3)
(+) Image based-feature embeddings PCA (FPCA) 86.62 (+0.7)

VG-500
Word embeddings (FW ) ML-GCN (Chen et al. 2019b) 32.6
(+) Image based-feature embeddings (FI ) 33.39 (+0.8)
(+) Image based-feature embeddings PCA (FPCA) 34.47 (+1.1)

Image embeddings: When the word embeddings are re-
placed by the d-dimensional embeddings generated using
latent image-representations, there is a significant improve-
ment in the accuracy for the two benchmarks as reported in
Table 3. This shows that the proposed image-feature embed-
dings can provide more robust representations in compari-
son to word embeddings.

Image based-feature embeddings PCA: As discussed
earlier, PCA is applied to the generated d-dimensional em-
beddings to obtain C-dimensional feature embeddings with
improved signal-to-noise ratio. The results given in Table 3
shows that applying PCA to the image embeddings improves
the performance of the proposed model by 0.7% and 1.1%
on MS-COCO and VG-500, respectively.

Conclusion
Multi-label image classification problems can be tackled us-
ing CNN-GCN frameworks, where the GCN employs word
embeddings as input features. However, word embeddings
schemes might not be optimal for allowing the GCN to learn
robust representations that encode label dependencies; word
embeddings are more suited for NLP tasks. Furthermore, ex-
isting models, including CNN-GCN are considerably large,
and thus their practical usefulness is limited in applications
that require low latency and/or memory. As such, this paper
proposes a new framework called IML-GCN that achieves
high precision while reducing the size of the network. It
takes advantage of the latest advancements in direct (TRes-
Net) and indirect methods (ML-GCN). Moreover, instead
of employing word embeddings, we use image-feature em-
beddings, which are more adapted in an image classification
context. We show that better classification results can be ob-
tained compared to previous methods including CNN-GCN
based approaches, while reducing the number of parameters.
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