Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
JuCify: A Step Towards Android Code Unification for Enhanced Static Analysis
SAMHI, Jordan; GAO, Jun; DAOUDI, Nadia et al.
2022In 44th International Conference on Software Engineering (ICSE 2022)
Peer reviewed
 

Documents


Texte intégral
jucify_preprint.pdf
Preprint Auteur (618.14 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Static Analysis; Android Security; Android code unification
Résumé :
[en] Native code is now commonplace within Android app packages where it co-exists and interacts with Dex bytecode through the Java Native Interface to deliver rich app functionalities. Yet, state-of-the-art static analysis approaches have mostly overlooked the presence of such native code, which, however, may implement some key sensitive, or even malicious, parts of the app behavior. This limitation of the state of the art is a severe threat to validity in a large range of static analyses that do not have a complete view of the executable code in apps. To address this issue, we propose a new advance in the ambitious research direction of building a unified model of all code in Android apps. The JuCify approach presented in this paper is a significant step towards such a model, where we extract and merge call graphs of native code and bytecode to make the final model readily-usable by a common Android analysis framework: in our implementation, JuCify builds on the Soot internal intermediate representation. We performed empirical investigations to highlight how, without the unified model, a significant amount of Java methods called from the native code are ``unreachable'' in apps' call-graphs, both in goodware and malware. Using JuCify, we were able to enable static analyzers to reveal cases where malware relied on native code to hide invocation of payment library code or of other sensitive code in the Android framework. Additionally, JuCify's model enables state-of-the-art tools to achieve better precision and recall in detecting data leaks through native code. Finally, we show that by using JuCify we can find sensitive data leaks that pass through native code.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Trustworthy Software Engineering (TruX)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SAMHI, Jordan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
GAO, Jun ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
DAOUDI, Nadia ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Graux, Pierre;  University of Lille
Hoyez, Henri;  Technische Universität Kaiserslautern
Sun, Xiaoyu;  Monash University
ALLIX, Kevin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
JuCify: A Step Towards Android Code Unification for Enhanced Static Analysis
Date de publication/diffusion :
21 mai 2022
Nom de la manifestation :
44th International Conference on Software Engineering (ICSE 2022)
Lieu de la manifestation :
Pittsburgh, Etats-Unis
Date de la manifestation :
from 21-05-2022 to 29-05-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
44th International Conference on Software Engineering (ICSE 2022)
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR14596679 - Dissecting Android Applications Using Static Analysis, 2020 (01/03/2020-31/10/2023) - Jordan Samhi
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 04 janvier 2022

Statistiques


Nombre de vues
347 (dont 37 Unilu)
Nombre de téléchargements
132 (dont 9 Unilu)

citations Scopus®
 
50
citations Scopus®
sans auto-citations
37
OpenCitations
 
2
citations OpenAlex
 
37

Bibliographie


Publications similaires



Contacter ORBilu