Article (Périodiques scientifiques)
Differentiation of primary CNS lymphoma and glioblastoma using Raman spectroscopy and machine learning algorithms
Klamminger, Gilbert Georg; Klein, Karoline; MOMBAERTS, Laurent et al.
2021In Free Neuropathology, 2, p. 26-26
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
3458-Article Text-8380-2-10-20211004.pdf
Postprint Éditeur (2.27 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Objective and Methods: Timely discrimination between primary CNS lymphoma (PCNSL) and glioblastoma is crucial for diagnostics and therapy, but most importantly also determines the intraoperative surgical course. Advanced radiological methods allow this to a certain extent but ultimately, biopsy is still necessary for final diagnosis. As an upcoming method that enables tissue analysis by tracking changes in the vibrational state of molecules via inelastic scattered photons, we used Raman Spectroscopy (RS) as a label free method to examine specimens of both tumor entities intraoperatively, as well as postoperatively in formalin fixed paraffin embedded (FFPE) samples. Results: We applied and compared statistical performance of linear and nonlinear machine learning algorithms (Logistic Regression, Random Forest and XGBoost), and found that Random Forest classification distinguished the two tumor entities with a balanced accuracy of 82,4% in intraoperative tissue condition and with 94% using measurements of distinct tumor areas on FFPE tissue. Taking a deeper insight into the spectral properties of the tumor entities, we describe different tumor-specific Raman shifts of interest for classification. Conclusions: Due to our findings, we propose RS as an additional tool for fast and non-destructive, perioperative tumor tissue discrimination, which may augment treatment options at an early stage. RS may further serve as a useful additional tool for neuropathological diagnostics with little requirements for tissue integrity.
Disciplines :
Oncologie
Auteur, co-auteur :
Klamminger, Gilbert Georg
Klein, Karoline
MOMBAERTS, Laurent ;  University of Luxembourg
Jelke, Finn
Mirizzi, Giulia
Slimani, Rédouane
HUSCH, Andreas  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Interventional Neuroscience
MITTELBRONN, Michel ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
HERTEL, Frank ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
Borgmann, Felix Bruno Kleine
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Differentiation of primary CNS lymphoma and glioblastoma using Raman spectroscopy and machine learning algorithms
Date de publication/diffusion :
2021
Titre du périodique :
Free Neuropathology
eISSN :
2699-4445
Maison d'édition :
University of Münster, Münster, Allemagne
Volume/Tome :
2
Pagination :
26-26
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 19 novembre 2021

Statistiques


Nombre de vues
175 (dont 4 Unilu)
Nombre de téléchargements
71 (dont 5 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
4
citations OpenAlex
 
7

Bibliographie


Publications similaires



Contacter ORBilu