Article (Périodiques scientifiques)
Leveraging High-Frequency Components for Deepfake Detection
MEJRI, Nesryne; PAPADOPOULOS, Konstantinos; AOUADA, Djamila
2021In IEEE Workshop on Multimedia Signal Processing
Peer reviewed
 

Documents


Texte intégral
2021165667.pdf
Postprint Auteur (2.47 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Deepfake detection; High-frequency components; Computer Vision
Résumé :
[en] In the past years, RGB-based deepfake detection has shown notable progress thanks to the development of effective deep neural networks. However, the performance of deepfake detectors remains primarily dependent on the quality of the forged content and the level of artifacts introduced by the forgery method. To detect these artifacts, it is often necessary to separate and analyze the frequency components of an image. In this context, we propose to utilize the high-frequency components of color images by introducing an end-to-end trainable module that (a) extracts features from high-frequency components and (b) fuses them with the features of the RGB input. The module not only exploits the high-frequency anomalies present in manipulated images but also can be used with most RGB-based deepfake detectors. Experimental results show that the proposed approach boosts the performance of state-of-the-art networks, such as XceptionNet and EfficientNet, on a challenging deepfake dataset.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Computer Vision Imaging & Machine Intelligence (CVI²)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MEJRI, Nesryne  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > CVI2
PAPADOPOULOS, Konstantinos ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Leveraging High-Frequency Components for Deepfake Detection
Date de publication/diffusion :
08 octobre 2021
Titre du périodique :
IEEE Workshop on Multimedia Signal Processing
ISSN :
2163-3517
eISSN :
2473-3628
Maison d'édition :
IEEE, Tampere, Finlande
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 18 octobre 2021

Statistiques


Nombre de vues
555 (dont 143 Unilu)
Nombre de téléchargements
530 (dont 13 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
3
OpenCitations
 
1
citations OpenAlex
 
5
citations WoS
 
5

Bibliographie


Publications similaires



Contacter ORBilu