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Abstract—In the past years, RGB-based deepfake detection has
shown notable progress thanks to the development of effective
deep neural networks. However, the performance of deepfake
detectors remains primarily dependent on the quality of the
forged content and the level of artifacts introduced by the forgery
method. To detect these artifacts, it is often necessary to separate
and analyze the frequency components of an image. In this
context, we propose to utilize the high-frequency components
of color images by introducing an end-to-end trainable module
that (a) extracts features from high-frequency components and
(b) fuses them with the features of the RGB input. The module
not only exploits the high-frequency anomalies present in ma-
nipulated images but also can be used with most RGB-based
deepfake detectors. Experimental results show that the proposed
approach boosts the performance of state-of-the-art networks,
such as XceptionNet and EfficientNet, on a challenging deepfake
dataset.

I. INTRODUCTION

Deepfakes are images and videos that seem genuine to
the human eyes, whereas, in reality, they are either entirely
or partially generated by an artificial intelligence algorithm.
Deepfakes appeared in 2017 as adult forged content, depicting
faces that were swapped with celebrities’ faces [1]. As a
technology, deepfakes have creative applications in movie
post-production, dubbing, productive education, and identity
anonymization. Nevertheless, they remain a significant threat
to the public order and international peace1, especially with the
virality of social media 2.Consequently, developing automated
deepfake detection tools has become a pressing matter. Deep-
fake detection started growing alongside the development of
deepfake generation methods and open-source software like
Face-Swap3, FakeApp4 and DeepFaceLab [6]. Researchers
started building image and video databases of fake content,
focusing on key properties, such as visual quality, level of
artifacts, and setup diversity. Most of deepfake detectors
operate on RGB data, as it is the most abundant form [5].
These detectors can be artifact-specific or undirected [7]. In
the first case, they try to find particular anomalies produced
by the deepfake generation methods. Such irregularities can
manifest as inconsistencies in the noise level, the color, the

1https://www.theguardian.com/world/2021/apr/22/
european-mps-targeted-by-deepfake-video-calls-imitating-russian-opposition

2https://www.bbc.com/news/technology-49961089
3https://github.com/deepfakes/faceswap
4https://www.malavida.com/en/soft/fakeapp

spectrum in the frequency domain, or the time domain in the
case of videos. On the other hand, undirected detectors are
networks that decide on their own which features are the most
relevant for classification between real and fake samples.

Promising results have been achieved so far [5]; however,
most approaches are either too artifact-specific or too general,
which hinders their performance. Indeed, methods extracting
only one type of artifacts can perform well, given samples that
contain these particular anomalies; nevertheless, they become
unusable when presented with data that does not suffer from
the targeted artifacts. For this matter, several works [9, 25,
34, 36, 37] adopted a mixture of color and frequency-domain
related artifacts extracted in parallel, which seemed to be
more sustainable. However, implementing those approaches
can generally imply different actions. For example, it can be
required to collect additional training data, especially when the
input videos are heavily compressed [13]. Another requirement
can be revisiting the architecture of a CNN [36], or tailoring a
specific architecture [9]. Clearly, mixing color and frequency-
domain artifacts is a suitable option for a more robust and
accurate detection. Nevertheless, the complexity and lack
of flexibility of the models remain unsettled. This problem
is addressed within this work by presenting a simple and
lightweight face-swap deepfake detection framework.

In this context, we propose to find a balance between
artifact-specific and undirected approaches. We aim to improve
the performance and the convergence of deepfake image-based
detectors by guiding them towards finding anomalous high-
frequency features in fake frames. Our approach does not
rely on collecting any additional data; instead, it leverages
information already present in the RGB input. We take interest
in the noise present in the high-frequency components to
discriminate between real and fake faces. Indeed, noise easily
affects the high frequencies of signals, and we hypothesize that
deepfake generation methods produce high-frequency noise
whose distribution is dissimilar to the noise in the real image.

This paper proposes to leverage the high-frequency com-
ponents of color images by extracting high-frequency and
RGB features in parallel. Then, both types of features are
fused and fed to a backbone network for classification. The
advantage of this approach is that it only substitutes the first
layer of a CNN, which makes it transferable to any RGB-based
deepfake detector. It takes advantage of color information in



Fig. 1. An example of a pair of activation maps learned in the High-Frequency Components (HFC) branch. The features are extracted from the same face,
and shown for different numbers of iterations. Real images do not show many noise traces even after a large number of iterations, whereas the fake images
have their high-frequency components emphasized especially in the facial region.

an undirected manner but guides the detection with the noise
traces. Additionally, it does not add an impactful cost to the
overall network architecture. Fig. 1. shows an overview of the
learned high-frequency traces by the proposed approach.

In summary, this paper’s contributions are the following:
• a DNN framework that boosts the performance of de-

tectors by leveraging the high-frequency components of
color images.

• an easily adaptable module that extracts high-frequency
components and fuses them with RGB features without
inducing any domain discrepancy between the two types
of features.

• an experimental validation and extensive analysis of the
impact of the high-frequency components module, as well
as the impact of identity bias on the performance of
deepfake detectors.

This paper is organized as follows: Section II introduces
a brief review of the literature of RGB-based and frequency
domain-based deepfake detection. In Section III, a description
of the proposed approach and its modalities is presented.
The conducted experiments are given in Section IV. Finally,
Section VI concludes this work.

II. RELATED WORK

This section examines important works addressing deep-
fake detection using color images and approaches leveraging
frequency-domain features for the same task.

a) RGB image-based deepfake detection: RGB-image-
based detectors exist for both artifact-specific and undirected
deepfake detectors [7]. The artifact-specific case is the most
common one [8, 16, 18]–[21, 24, 26]–[28]. The work in [16]
uses speeded up robust features (SURF) [17] and support
vector machines (SVM) to discriminate between real and
swapped faces. MesoNet [8], a shallow CNN network that
extracts steganalysis and mesoscopic features, classifies videos
based on an aggregation score made on each frame. Similarly,
[18] detects fake videos by investigating frames for warping
and blurring artifacts, as the resolution of generated faces is

usually lower than final frame’s resolution. Face X-ray [19]
predicts the blended boundaries on face-swap deepfakes. [20,
21] demonstrated that GAN-generated content hides a unique
fingerprint that can be attributed to the generation method.
Approaches such as [24] focus on prepossessing the input
images with a specific module that emphasizes the residual
artifacts, then using adaptive convolutional layers, learns to
recognize those particular artifacts. Physiological artifacts have
also been explored; [26]–[28] use RGB frame sequences to
measure the heart rate and the pulse of subjects in videos
from their skin tone.

In the undirected case, XceptionNet [4], a CNN network,
achieved encouraging results on different face-swap forgery
methods [13]. Besides, achieving over 95% accuracy on raw
images, its performance with respect to different compres-
sion rates remains competitive compared to other methods.
Similarly, the winner of the Facebook Deepfake Detection
Challenge [15, 29] and [30] used a state-of-the-art EfficientNet
[3] as a backbone network which proved to be effective in
deepfake classification. These works showed that undirected
methods are as efficient as artifact-specific approaches. The
key factors in building a powerful model are the backbone
selection and well-crafted data augmentation. Generally, color-
image-based detectors are performant. However, they either
require a significant amount of data to perform well [13], or
they only target one type of artifacts, which puts them at risk
when the artifacts are not present in the images.

b) Frequency-domain deepfake detection: Besides color
information, many works consider frequency-domain features
for deepfake detection [22, 23, 31]–[33, 35]. Wang et al.
showed in [22] that the high-frequency components play a
significant role in the generalization capabilities of CNNs,
whereas [31] proved that learning in the frequency-domain
could preserve most of the information within high-resolution
images. [23] pointed that using the Discrete Fourier Transform
(DFT) and averaging the amplitude of each frequency band
can reveal discriminative spectral irregularities in fake faces.
F3-Net [32] used two frequency-domain-based pipelines: One



Fig. 2. A deepfake detection architecture augmented with High-Frequency Components (HFC) module. On the left, the module substitutes the first layer of
a CNN network. It preprocesses the RGB input image to extract high frequency components as well as color features in parallel. On the right is the CNN
backbone which can be any state-of-the-art network like XceptionNet [4] or EfficientNet [3].

that discovers salient frequencies from the Discrete Cosine
Transform (DCT) and the second extracting local frequency
statistics. [33] showed that GAN-generated content exhibits
severe spectral artifacts stemming from the upsampling step of
generative models and their variants. [35] showed that CNN-
generated content has traceable artifacts common to all forgery
methods and that by performing adequate data augmentation,
models generalize well to both unseen tampering techniques
and datasets. Similar to color-image-based detection, using
only one type of artifact is not always reliable for detection.

c) Mixed artifacts deepfake detection: The third di-
rection explored for deepfake detection uses both color and
frequency-domain features [25, 34, 36, 37]. The works pro-
posed in [25, 36, 37] rely on two streams, where color features
are learned in combination with frequency-domain-related
features. Similarly, [34] presents a new approach (SPSL) that
uses the spatial images and the phase spectrum jointly to
capture upsampling artifacts. Furthermore, [36] shows that
most deepfake detection models are biased on method-specific
color textures and that high-frequency noise features yield
more robust representations, which reduces overfitting.

In general, targeting more than one type of artifacts im-
proves the detectors’ performance. However, it usually comes
at the cost of developing complex architectures. Therefore, we
propose to build richer feature representations by combining
high-frequency components’ noise with color features and
keeping the overall architecture simple.

III. PROPOSED APPROACH

This section describes the proposed approach for RGB
image-based face forgery detection, i.e., given an image or
a video frame, detecting whether faces are real or forged. The
solution consists of two independent parts: (1) a module for
extracting different artifact-specific features jointly, followed
by (2) a CNN backbone for classification. The introduced
architecture is depicted in Fig. 2.

A. High-Frequency Components module

It is usually assumed that CNNs implicitly extract high-
frequency components on their own as low-level features,
since such information is always present within the edges
of an image. However, we show that explicitly providing
networks with these components helps them achieve a boost
of performance at a minimal cost. Fig. 2., shows the pro-
posed High-Frequency Components (HFC) module, which is
transferable from one CNN network to another. It has two
branches; The first is for exploiting the color features and has
similar parameters as the first convolutional layer of the chosen
backbone network. The convolutional layer of the color branch
has an output of dimension C for the feature maps. Its goal
is to extract low-level features from the color texture. The
second branch is for exploiting high-frequency components.
The high-frequency features are extracted in the image domain
by first converting the input to a grayscale image Ig . Then,
Ig is smoothed by a Gaussian filter. Finally, both Ig and its
smoothed version are used to calculate the high-frequency
image IHFC as follows:

IHFC(x, y) = Ig(x, y)−
1

2πσ2

∑
i,j

Ig(x+ i, y + j)e−
i2+j2

2σ2 ,

(1)
where (x,y) are a given pixel coordinates, and σ the standard
deviation of the Gaussian filter whose value is set empirically.
The high-frequency image undergoes batch normalization and
an activation layer, to be finally passed to a convolutional
layer for high-frequency noise feature extraction. The latter
layer outputs bC3 c feature maps, where bc is the rounding
operation. The extracted features are normalized and passed
through an activation layer. Finally, the color features and
the high-frequency features are stacked to obtain an output
of dimension C + bC3 c feature maps. The convolutional layer
that accepts these feature maps outputs C′ channels where C′
matches the input dimension required by the second layer of



Fig. 3. The original XceptionNet architecture (top) versus the HFC augmented
Xception architecture (bottom).

the chosen backbone network.

B. Backbone networks

This subsection introduces the second main component of
the proposed approach, i.e., CNN backbones compatible with
the afore mentioned HFC module for deepfake detection.

a) XceptionNet: is a CNN trained and tested on Im-
ageNet [42], on which it achieved 79% top-1 accuracy. It
is characterized by its Xception block, inspired from the
Inception block [2]. It differs from the latter by the performing
depth-wise separable convolutions with residual connections.
Each channel of the block’s input is convolved separately, then
a point wise convolution is applied. Its goal is to help the
network capturing cross-channel correlations. It had been first
proposed for face forgery detection in [13], and quickly be-
came a baseline model for many works [43]–[47] performing
the same task.

b) EfficientNet: is a more recent family of CNNs pro-
posed in [3]. It introduced a compound CNN scaling approach.
Its main idea is that convolutional neural networks cannot be
randomly scaled and that their width, depth, and resolution
depend on each other. Thus scaling CNNs, should be done
uniformly according to a fixed ratio, i.e., when an input image
has a larger resolution. In that case, the network needs more
convolutional layers to increase its receptive fields and more
channels to capture more fine-grained patterns on the bigger
image. EfficientNet was trained and tested on ImageNet [42],
on which it reached 83.8 % top-1 accuracy. It became popular
due to the fair trade-off it offers in terms of dimension,
complexity and classification performance [29, 30, 43, 47]. For
our approach, we adopt Efficient-Net B4 as it has a relatively
low number of parameters (19M), and because it proved to be
efficient for face forgery detection [30].

IV. EXPERIMENTS

This section outlines the setup and the led experiments.

A. Dataset

For our experiments, we chose to use Celeb-DF [14], a
challenging state-of-the-art face-swapping videos dataset. It
depicts 59 celebrities and provides a large number of fake
videos where resembling identities are swapped between each
other. The videos are generated by a learning-based method

Fig. 4. The original EfficientNet architecture (top) versus the HFC augmented
EfficientNet architecture (bottom).

called Deepfakes5, that had also been used to generate previ-
ous datasets such as FaceForensics++ [13]. However, Celeb-
DF [14] is more challenging because its generation method
performs a lot of post-processing to improve not only the
visual quality but also the resolution of the generated faces.
It also considers diversity on different levels (background,
illumination, gender, skin color, age). The enhanced method
generates 5,639 fake videos from a set of celebrities’ videos
downloaded from YouTube. On the other hand, there are only
590 videos in the real class, and not all of the subjects are
celebrities. Therefore, the classes are imbalanced. Addition-
ally, the sequences have an average length of 13 seconds, and
most of the subjects are nearly front-facing without occlusions.
Finally, all videos are in MPEG4.0 format to mimic a real-
world setup. Table I provides Celeb-DF’s [14] specifications.

TABLE I
SPECIFICATIONS OF THE CELEB-DF DATASET.

#videos #frames #subjects
Dataset Real Fake Real Fake famous regular
Celeb-DF [14] 590 5639 225.4k 2116.8k 59 300

B. Setup

We propose to split our dataset according to the cross-
subject protocol. The models are trained only with 32 frames
per sequence. Indeed, a smaller number would result in over-
fitting, whereas a larger one would not necessarily improve
the model’s performance [29, 30]. For each frame, the face
tracking module BlazeFace [38] is employed to focus solely on
the facial region. The extracted faces are saved as RGB images
of size 224x224. The Albumentations [39] library is also used
to augment the dataset, adding various transformations like
random horizontal flipping, random hue, saturation, brightness,
and contrast changes. The Gaussian filter size and σ are set
empirically to 3 × 3 and σ = 3 respectively. The models
are trained in an end-to-end fashion using the Pytorch [40]
framework. We use the Binary Cross Entropy (BCE) loss and
the Adam [41] optimizer with default parameters of β1 = 0.9,
β2 = 0.999 and ε = 10−8, as well as an initial learning rate
of 10−3. A decay factor of 0.1 is set to decay the learning
rate as soon as the loss does not decrease after ten validation

5https://github.com/deepfakes/faceswap



passes. The batch size is 32 images taken in a random but
balanced manner. Each model is trained up to 100k iterations.
The training is set up to stop if the loss reaches a plateau
after ten validation passes or if the minimum learning rate of
10−8 is reached. All the models are trained using a computer
with an Intel Xeon E5-2640-v4 CPU and an NVIDIA Titan V
GPU.

V. RESULTS

This section reports the experimental results, highlighting
the importance of proper data splitting protocols and the
impact of early coupling of the high-frequency components
with color data deepfake detection.

A. Analysis of the impact of the identity bias

One of the reasons deepfake detectors perform well on
in-house deepfake generation methods and datasets is that
they overfit the color textures of the input images as pointed
out by [36]. In the same context, we show that detectors
are also biased to the subjects’ identities. Indeed, face-swap
methods rely on gathering a large number of videos with real
subjects and swapping the faces of those who are similar. Most
deepfake detectors do not consider that when performing data
splits. For this matter, we define the identity split as splitting
the dataset according to the number of identities in it, instead
of the number of videos, i.e., we put real and fake videos
of the same person in the same set. We perform an identity
split on Celeb-DF [14], using about 21% of the identities for
testing and 19% for validation. Table II shows the impact of
isolating the subjects’ identities versus using a random data
split proposed by the authors of [14]. The results suggest that
the models’ performance is biased and that they overfit the
subjects’ identities. Indeed, detectors learn the subjects’ faces
during training, which explains their high-performance on a
testing set containing faces they know.

TABLE II
THE IDENTITY BIAS INDUCED BY THE RANDOM DATA SPLITS PROTOCOL.

Method Accuracy AUC
XceptionNet [4] + random split 0.9633 0.9951
XceptionNet [4] + identity split 0.8834 0.9669
EfficientNet-B4 [3] + random split 0.9642 0.9959
EfficientNet-B4 [3] + identity split 0.9056 0.9756

B. Analysis of the impact of HFC

Besides isolating subject identities when performing the
data split, it is possible to improve the detection by making the
model focus on more than one type of artifacts. We experiment
with both XceptionNet [4], EfficientNet [3] and the HFC
module. Table III shows the results of using our module
with both networks. Despite their initial accurate performance,
the HFC module could still improve the accuracy without
using any additional data or changing the architecture of the
backbone networks. The advantage of our method is that it
allows to remain architecturally flexible and at the same time
guide the supposedly undirected CNN with extracted high-
frequency components, which boosts the performance and

TABLE III
THE PERFORMANCE OF SOTA NETWORKS ON FACE FORGERY DETECTION

WITH AND WITHOUT THE HIGH-FREQUENCY COMPONENTS FOLLOWING
DIFFERENT DATA SPLITTING PROTOCOLS.

Random split Cross-id split
Method Setup Acc. AUC Acc. AUC

XceptionNet [4]
no HFC 0.9633 0.9951 0.8834 0.9669

HFC 0.9663 0.9963 0.9064 0.9728
HFC only 0.9431 0.9901 0.8750 0.9665

EfficientNet-B4 [3]
no HFC 0.9642 0.9959 0.9056 0.9756

HFC 0.9654 0.9950 0.9246 0.9782
HFC only 0.9198 0.9742 0.8123 0.9171

speeds up the network convergence. Additionally, we trained
the backbone models with the high-frequency components of
each channel, extracted as in (1) and stacked as an RGB image.
The results suggest that high-frequency components provide
complementary information to the low-frequency components
and color features. Using such information explicitly leads to
richer feature representations, making models less prone to
overfitting the artifacts of the input images. Furthermore, from
table IV, EfficientNet-HFC converges 12.5% faster at a cost of
28.65% additional FLOPS. On the other hand, XceptionNet-
HFC benefits from a 48.15% faster convergence at the cost of
1.37% additional FLOPS. Thus, the results align with our goal
of improving the performance and keeping the complexity low.

TABLE IV
MODELS PARAMETERS AND COMPLEXITY WITHIN THE PROPOSED

FRAMEWORK

Method #Param. #FLOPS #iter. to convergence
EfficientNet [3] 17.55 M 1.594 B 40.5k
EfficientNet [3] + HFC 17.58 M 2.234 B 36k
XceptionNet [4] 20.81 M 4.609 B 40k
XceptionNet [4] + HFC 20.82 M 4.673 B 27k

Additionally, Fig. 1 shows the activation maps of the
high-frequency branch in the HFC module. As the number
of iterations increases, the network learns to discard non-
informative edges and only keeps the noise traces as the most
informative regions of the images, especially for fake images.
This experiment shows that the network is learning traces that
are useful for deepfake detection.

VI. CONCLUSION

In this paper, we tackled the problem of face forgery
detection by face-swapping methods. We showed that standard
CNNs are capable of achieving accurate detection. However,
their performance can suffer from identity bias when the data
split is not performed carefully. Additionally, we introduced a
flexible framework that uses state-of-the-art CNNs and high-
frequency components to detect face tampering. We proposed
letting the networks learn from the color features and, at
the same time, guiding them towards finding noise traces in
the high-frequency components of the input images. Contrary
to other works leveraging the same type of features, our
module is easily adaptable and can be transferred from one
network to another without inducing heavy changes to the



overall architecture. Finally, the comprehensive experiments
demonstrated the high-frequency features’ informativeness and
their role, alongside the color features, in building richer
feature representations. It showed that our HFC module, and
the identity split, can contribute to making deepfake detection
models more precise. Future works will consider more chal-
lenging datasets with noise addition and different compression
levels to simulate a more realistic environment.
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