Reference : Departure and Trajectory Design Applications using Stretching Directions
Scientific congresses, symposiums and conference proceedings : Unpublished conference
Engineering, computing & technology : Aerospace & aeronautics engineering
Departure and Trajectory Design Applications using Stretching Directions
Muralidharan, Vivek mailto [University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics >]
Howell, Kathleen C. [Purdue University - Purdue > Aeronautics and Astronautics]
AAS/AIAA Astrodynamics Specialist Conference
from 09-08-2021 to 11-08-2021
[en] Trajectory Design ; Stretching Directions ; Cauchy-Green tensor ; Circular Restricted Three-Body Problem ; Cislunar missions ; Halo Orbit ; Distant Retrograde Orbit ; Trajectory Optimization
[en] Stable or nearly stable orbits do not always possess well-distinguished manifold structures that assist in departing from or arriving onto the orbit. Generally, for potential missions, the orbits of interest are nearly stable to reduce the possibility of rapid departure. The stable nature of these orbits also serves as a drawback for insertion or departure from the orbit. The Near Rectilinear Halo Orbits (NRHOs) and the Distant Retrograde Orbits (DROs) offer some potential long-horizon trajectories for exploration missions. The current investigation focuses on leveraging the stretching direction as a tool for departure and trajectory design applications. The magnitude of the state variations along the maximum stretching direction is expected to grow rapidly and, therefore, offers information for efficient departure from the orbit. Similarly, the maximum stretching in reverse time, enables arrival with a minimal maneuver magnitude.

File(s) associated to this reference

Fulltext file(s):

Limited access
Mur_How_AAS_Conference_2021.pdfAuthor postprint11.05 MBRequest a copy

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.