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DEPARTURE AND TRAJECTORY DESIGN APPLICATIONS
USING STRETCHING DIRECTIONS

Vivek Muralidharan* and Kathleen C. Howell†

Stable or nearly stable orbits do not always possess well-distinguished manifold
structures that assist in departing from or arriving onto the orbit. Generally, for
potential missions, the orbits of interest are nearly stable to reduce the possibility
of rapid departure. The stable nature of these orbits also serves as a drawback for
insertion or departure from the orbit. The Near Rectilinear Halo Orbits (NRHOs)
and the Distant Retrograde Orbits (DROs) offer some potential long-horizon tra-
jectories for exploration missions. The current investigation focuses on leveraging
the stretching direction as a tool for departure and trajectory design applications.
The magnitude of the state variations along the maximum stretching direction is
expected to grow rapidly and, therefore, offers information for efficient departure
from the orbit. Similarly, the maximum stretching in reverse time, enables arrival
with a minimal maneuver magnitude.

INTRODUCTION

With the long term potential of NASA’s Lunar Gateway facility, there is a growing interest in
accessing nearby stable cislunar orbits for various mission scenarios. Near Rectilinear Halo Orbits
(NRHOs) are members of the family of halo orbits in the L1 and L2 regions in the Earth-Moon
system that offer potential candidates suitable for any long term presence. These NRHOs are stable
or nearly stable as characterized by the linear variational flow in the circular restricted three-body
problem (CR3BP).1, 2 The near rectilinear halo orbits offer reasonably close lunar passages and
large out-of-plane amplitudes relative to the Earth-Moon orbit plane, appropriate for investigating
the polar regions of the Moon. Similar to the NRHOs, the Distant Retrograde Orbits (DROs) offer
a range of stable orbits in the Earth-Moon system. The DROs are potential hosts for proposed
propellant depots, that reduce costs to access various cislunar orbits and enable transfer options to
interplanetary orbits.3, 4 The Lunar Distant Retrograde Orbit (DRO), approximately 70,000 km from
the Moon, served as the baseline for the previously investigated Asteroid Redirect Mission (ARM).5

With the increasing number of mission scenarios and with a potential human presence, an im-
portant capability is transfers between various locations of interest relatively quickly and cost effi-
ciently. Disposal of logistic modules, for example, while avoiding any collisions is also a concern.
Manifolds have been used extensively for orbit departure and trajectory design, however, the lack
of well-distinguished stable and unstable manifold structures on orbits that are nearly stable is a
challenge. Previous transfer trajectory design approaches linking stable orbits exploit intermedi-
ate segments of known orbits, resonant arcs as well as manifolds of known unstable orbits,6–10

however, the most productive types of intermediate orbits are not known a priori. In this inves-
tigation, the dynamical flow is visualized using the principal stretching directions. Variants from
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the stretching directions have been employed for multiple space applications, for example, sta-
tionkeeping,2, 11–14 trajectory design (e.g., the EQUULEUS mission15, 16), sensitivity analysis along
quasi-satellite orbits,17 patch-point placements along sensitive trajectories,18 as well as monitoring
perturbation growth along trajectories.19 An alternate strategy that offers reliable departure and ar-
rival analysis from stable orbits are explored in this investigation, one that leverages the maximum
stretching directions. An effective departure from the orbit serves as a preliminary step for the
disposal problem as well as a basis for transfers to other spatial locations.

CIRCULAR RESTRICTED THREE-BODY PROBLEM (CR3BP)

The circular restricted three-body problem (CR3BP) is a time invariant approximation for the
spacecraft dynamics in the higher-fidelity ephemeris model. The CR3BP model characterizes the
motion of a spacecraft influenced by the gravitational forces of two primary bodies, e.g., the Earth
and the Moon, each rotating in coplanar circular orbits about their mutual barycenter.20 Further,
it is assumed that the spacecraft and the primary bodies are all point masses. The motion of the
spacecraft in the CR3BP framework is derived in the context of a dextral orthonormal triad x̂, ŷ and
ẑ that constitutes a coordinate system, R, rotating at a fixed rate, consistent with the revolution of
the primary bodies about their barycenter. The x̂ axis in the rotating frame is the line joining the pri-
maries, i.e., the Earth-Moon line; the positive direction is a view from the Earth towards the Moon.
The direction normal to the Earth-Moon orbit plane and parallel to the orbital angular momentum
is denoted by the positive ẑ direction. Finally, ŷ completes the right-hand coordinate system. The
three spacial directions are used to describe the nonlinear spacecraft motion. The position vector
is represented as r̄ = [x, y, z]T and velocity states by v̄ = [ẋ, ẏ, ż]T. Again, for convenience, the
6-dimensional state is written by x̄ = [r̄T, v̄T]T = [x, y, z, ẋ, ẏ, ż]T, where superscript ’T’ implies
a transpose operation. Note that overbars represent vector quantities. The CR3BP dynamics facili-
tates understanding of the underlying nonlinear spacecraft motion rather than direct analysis in the
higher-fidelity ephemeris model due to time-dependency as well as additional complexities. The
model in the CR3BP also admits five equilibrium points, all in the xy plane, labelled as the libration
points, or Lagrange points. Identified as L1 through L5, the first three L1, L2 and L3 are collinear
and located on the line joining the primary bodies. In the Earth-Moon system, the equilibrium point
L1 lies on the x̂-axis between the Earth and the Moon, while L2 is on the far side of the Moon.

An infinite number of periodic orbits exist in the CR3BP as limit cycles. The location, stability
characteristics as well as the accessibility to the periodic orbits in the CR3BP system determine
their suitability as potential mission candidates. Within the Earth-Moon system, a family of 3-
dimensional periodic trajectories near the L1 and L2 equilibrium points, commonly termed halo
orbits, are potential destinations for a long-term facility in cislunar space.21 Specifically for NASA’s
Gateway mission, an L2 southern halo orbit is the current focus. Some members of the L2 halo
family with close lunar passages and high out-of-plane amplitudes are stable or nearly stable based
on a variational linear stability analysis.1 The stability index, νi = (1/2)(λi + 1/λi), is a parameter
defined to measure the stability characteristics for a periodic orbit, where λi are the eigenvalues
from the monodromy matrix, i.e., the state transition matrix computed over precisely one orbital
period. For stable orbits, the absolute value of the stability index is less than or equal to one, i.e.,
|νi| ≤ 1. The Near Rectilinear Halo Orbits (NRHOs) are a subset of the halo orbit family that
are stable or nearly stable orbits, as measured using stability index. The Distant Retrograde Orbits
(DRO) and the Low Lunar Orbits (LLO) also offer a range of stable or nearly stable orbits.

STRETCHING DIRECTIONS

The maximum stretching direction at any point along an orbit is constructed to assess the impact
of a maneuver. The spacecraft advances along a ballistic trajectory between two successive impul-
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sive maneuver locations, for a time interval specified by the coast duration. A linear state transition
matrix (STM) is generally reliable to assess the impact of deviations on the states at some time
downstream. The linear flow is visualized using the Cauchy-Green tensor (CGT), a function of the
STM, that offers reliable estimation of perturbation growth, especially for orbits where leveraging
manifold structures may not be straightforward. The Cauchy-Green tensor (CGT), or simply ‘C’, is
a product of the transpose (superscript T) of the state transition matrix (STM) defined as

C(tf , t0) = φ(tf , t0)Tφ(tf , t0) (1)

that renders the square of the magnitude of the final deformation to the initial deformation such that

||δx̄f ||2 = δx̄T
fδx̄f = δx̄T

0φ(tf , t0)Tφ(tf , t0)δx̄0 = δx̄T
0C(tf , t0)δx̄0. (2)

where t0 and tf are the initial and final epochs while φ(t, t0) = ∂x̄(t)
∂x̄0

is the linear STM.22, 23 The
STM is evaluated on a reference trajectory, x̄∗(t), to map the initial perturbed states, δx̄0, to the
final perturbed isochronous states, δx̄f . The eigen-decomposition of the CGT, or the singular value
decomposition of the STM, offers information about directions and magnitudes of the perturbation
growth. The eigen-decomposition of the CGT field yields the eigenvalues λi and the eigenvectors
Vi, such that the contraction or expansion of the local phase space is represented by σi in the
directions along Vi. Here, σi =

√
λi. The singular value decomposition (SVD) of the STM,

UΣV∗ = φ(tf , t0) (3)

offers additional directional information, i.e., U, also U = φ(tf , t0)V. The columns of the matrix U
yield the stretching directions at the final epoch. For a square matrix, φ, Σ is a diagonal matrix with
σ1 > σ2 > . . . > σn, where σi = Σii, is the element in Σ located in the ith row and ith column. The
principal stretching directions at time t0, along a propagated arc, is captured by the matrix V. The
matrices U and V are each orthonormal. Figure 1 illustrates the contraction and expansion along
different flow directions using the example of a two-dimensional system transformed through CGT.

Different elements of the STM offer a correlation between a corresponding initial state and a
final state. The flow between two successive impulsive maneuvers, at time t0 and tf respectively, is
delivered by the STM evaluated along a ballistic segment, i.e., ϕC , such that

ϕC(tf , t0) =

[
ϕC,r,r ϕC,r,v

ϕC,v,r ϕC,v,v

]
=

[
∂r̄f
∂r̄0

∂r̄f
∂v̄0

∂v̄f
∂r̄0

∂v̄f
∂v̄0

]
(4)

where ϕC,r,r, ϕC,r,v, ϕC,v,r and ϕC,v,v are the 3 × 3 submatrices of 6 × 6 matrix ϕC . Specific
submatrices of ϕC yield more relevant characteristics. For example, the 3× 3 dimensional subma-
trix, ϕC,r,v, maps the initial velocity perturbation, δv̄0, to the final position change, δr̄f , and the
3 × 3 dimensional submatrix, ϕC,v,v, maps the initial velocity perturbation, δv̄0, to the final veloc-
ity change, δv̄f . An efficient departing maneuver rapidly leaves the vicinity of the reference orbit
with minimum propellant consumption. Since departure is characterized by a sufficient change in
position and velocity quantities, the combined, 6× 3 dimensional submatrix ϕC,rv,v, where

ϕC,rv,v =

[
ϕC,r,v

ϕC,v,v

]
(5)

maps the initial velocity perturbation, δv̄0, to the combined final position and velocity state change,
δr̄f and δv̄f , and offers more relevant characteristics. The sensitivity of the orbit states at the
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Figure 1: Principal stretching directions.

final time to the initial velocity changes
is measured by monitoring the magnitude
of maximum stretching, σ1, correspond-
ing to the ϕC,rv,v submatrix. Any velocity
change along the direction Vi, evaluated
on the submatrix ϕC,rv,v, offers the maxi-
mum change in the combined position and
velocity state magnitude at the final time
and, thus, an effective direction to depart
the proximity of the reference orbit.

The orbit departure problem exploits any velocity change along the maximum stretching direction
to rapidly deviate from the vicinity of the reference orbit. The application of the maneuver in the
maximum stretching direction is antithesis to the stationkeeping problem demonstrated by Muralid-
haran and Howell,11, 12, 14 where effective stationkeeping maneuvers are delivered in the direction
perpendicular to the maximum stretching direction to remain in the vicinity of the reference orbit.

ORBIT DEPARTURE

NASA’s Gateway facility is to be maintained for a sufficiently long duration along the 9:2 synodic
resonant orbit in the L2 southern NRHO family. The NRHO that is the current baseline is nearly
stable. While a nearly stable orbit is suitable for reducing the stationkeeping costs,2, 11, 12, 24 it is
challenging to get the spacecraft and/or the discarded logistic modules away from the reference
orbit25 and avoid any potential collisions with the in-orbit spacecraft. This investigation focuses
on leveraging the maximum stretching direction as a tool to depart the vicinity of a nearly stable
NRHO and provide an alternative to exploiting manifolds for departure. Manifolds offer a suitable
highway architecture to access and departure from the orbit, but for notably unstable orbits. As the
stability of the orbit increases, the functionality of the manifolds reduces for such applications. The
orbit departure problem in this investigation potentially serves as the preliminary step for disposals
and transfers.

Momentum Integral

The Momentum integral is a parameter defined to identify the periodicity and boundedness of a
trajectory.2 Mathematically, it is the line integral of the position vector along a trajectory, i.e.,

MI(t) =

∫ t

t0

x(τ)ẋ(τ) + y(τ)ẏ(τ) + z(τ)ż(τ)dτ (6)

where, the position vector is defined relative to the Earth-Moon barycenter in the CR3BP frame.
For a time-invariant system such as the higher-fidelity ephemeris model where states are not pre-
cisely periodic, the momentum integral is not perfectly periodic, however, remains bounded along
a trajectory that resembles the geometry of an orbit. The Momentum integral evaluated along tra-
jectories in the neighborhood of the reference trajectory provides a suitable measurement to assess
their boundedness. Figure 2(a) demonstrates the behavior of a perturbed trajectory, colored as red,
relative to the reference trajectory, colored as black, in configuration space. Figure 2(b) quantifies
the momentum integral evaluated along the trajectories in Figure 2(a). Clearly, the evolution of
the momentum integral along the periodic reference path and the perturbed path are reflective of the
motion in the configuration space. The reference trajectory is perfectly periodic, and the value of the
momentum integral corresponds to the same behavior. However, the perturbed trajectory, colored
in red, undergoes motion similar to the reference trajectory for a certain duration before departing
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significantly from the reference motion. Consider, the reference trajectory represented by Γ, and the
perturbed trajectory as Γ̃. A metric, defined as

∆MI(t) = |MIΓ̃(t)−MIΓ(t)| (7)

that is, the absolute value of the difference between the momentum integral evaluated along the
actual perturbed path and the reference path. This metric serves well to quantify the departure of
the actual perturbed path relative to the reference path. Consistent with the previous literature as
applied to an NRHO,25 a spacecraft is considered to have departed the vicinity of the reference path
if the value of ∆MI exceeds 10−1, however, the specific value best suited for defining departure is
dependent on each problem. For the current application, using 10−1 for the threshold is adequate.
The departure of the perturbed trajectory, in Figure 2(a), is quantified relative to the reference tra-
jectory in terms of ∆MI in Figure 2(c). Based on the assumed threshold, the ∆MI at the end of the
propagated segment is larger than 10−1, hence it is considered to have departed the vicinity of the
reference NRHO.

Figure 2: Detecting departure of neighboring trajectory. (a) Reference
trajectory (black) and perturbed neighboring trajectory (red) is plotted in
the configuration space. (b) Momentum integral value computed along
the reference and perturbed trajectory. (c) Absolute difference between
momentum integral of the perturbed trajectory relative to the reference.

Invariant manifolds
have been leveraged
extensively for trajec-
tory design applications
and disposal.26–31 Al-
though manifold the-
ory is effective for un-
stable orbits, relatively
stable orbits do not pos-
sess well distinguished
manifolds. Examples
in this investigation are
based on the baseline
orbit under considera-
tion for Gateway. The
9:2 synodic resonant
L2 NHRO is ”nearly”
stable suggesting that
unstable manifolds ex-
ists but are challenging
to numerically construct, particularly near lunar vicinity. The unstable manifolds along the 9:2 syn-
odic resonant southern L2 NRHO with an approximate perilune radius of 3200 km is plotted in
Figure 3(a). An alternate strategy leverages maneuvers delivered in the maximum stretching direc-
tion. The two sets of maximum stretching directions labelled as type ’A’ and type ’B’ are plotted in
Figures 3(b) and 3(c), respectively. For each of the plots in Figure 3 and throughout this investiga-
tion, locations along the NRHO are represented in terms of osculating true anomaly.12 Departures
along the unstable manifolds offer a criterion to identify the effectiveness of leveraging the maxi-
mum stretching directions. Trajectories along the unstable manifold directions are propagated for a
duration of 10 revs of the reference NRHO, approximately equal to 65.73 days. These trajectories in
configuration space are plotted in Figure 4(a), where the color for each trajectory corresponds to the
osculating true anomaly location at which the states along the unstable manifolds are propagated.
The corresponding absolute difference in the momentum integral evaluated along each of these tra-
jectories relative to the reference NRHO are plotted in Figure 4(b). For reference, the threshold
value of ∆MI = 10−1 is also displayed, to identify the departed trajectories. A simplified way of
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classifying the departed trajectories is by identifying the time at which the trajectory exceeds the
∆MI = 10−1 criterion. Some departed trajectories may drop back below ∆MI < 10−1 values
due to the underlying nonlinear motion, however, for simplicity, only the time at which the first
departure condition is satisfied is recorded. Figure 5 reflects the time for the trajectories along the
unstable manifold directions to be labelled departure. The blue and the red data points correspond
to the two unstable manifold directions at a given osculating true anomaly location along the orbit.
For certain osculating true anomaly values, either one or no data points are recorded, indicating that
either one or none of the unstable manifolds propagated from that value of true anomaly departs
the vicinity of the NRHO for the propagated time duration, respectively. In general, for most true
anomaly values, a trajectory along the unstable manifold direction requires at least 50 days to be
considered departed.

(a) Unstable manifolds (b) Max. Stretching directions ’A’ (c) Max. Stretching directions ’B’

Figure 3: Unstable manifold directions and maximum stretching directions along the 9:2 synodic
resonant southern L2 NRHO.

(a) Configuration space (b) ∆MI along unstable manifolds

Figure 4: Trajectories along unstable manifolds in the configuration space, and their corresponding
∆MI values.

A maneuver along the maximum stretching direction impacts the maximum change in the mag-
nitude of the state at the end of the propagated arc. In most applications, within trajectory design or
for disposal, a specific time duration for the propagation may be unknown a priori. For simplicity,
the maximum stretching directions are computed along with the monodromy matrix. The maxi-
mum stretching direction leveraging the monodromy matrix, inherently assumes that a delivered
maneuver causes a sufficient step-off and consequently gets captured along other manifold struc-
tures, resonant arcs and sections of higher periodic orbits. Such structures aid in rapid departure
from the stable orbit.
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Figure 5: Time to depart along unstable manifolds

In contrast to leveraging the unstable man-
ifolds, an actual maneuver is delivered along
the maximum stretching direction, for differ-
ent locations on the NRHO. Similar to the un-
stable manifolds, there exists two sets of max-
imum stretching directions, labelled as type
’A’ and type ’B’, as demonstrated in Figures
3(b) and 3(c), respectively. Initial maneu-
vers of different magnitude results in differ-
ent variations in the final state. Figures 6(a),
6(c), 6(e) and 6(g) demonstrate the effect of
maneuvers of magnitudes 1 m/s, 4 m/s, 16 m/s and 100 m/s as viewed in configuration space. In
these figures, maneuvers are delivered along the maximum stretching directions as indicated in both
type ’A’ and type ’B’. Note that the Jacobi constant along the unstable manifolds is consistent with
the reference NRHO, however, with the delivery of an additional maneuver along the maximum
stretching direction, the Jacobi constant for the perturbed trajectory is no longer precisely the same
as the reference orbit. Thus, the Jacobi constant or the energy level along the trajectory in the Type
’A’ direction and Type ’B’ direction at the corresponding osculating true anomaly location may be
different. An increase or decrease in the energy level of the trajectory does not correlate directly to
the rate of departure. The change in the momentum integral evaluated along each of the perturbed
trajectories, ones with maneuvers along the maximum stretching directions, given in Figures 6(b),
6(d), 6(f) and 6(h) for maneuver magnitudes of 1 m/s, 4 m/s, 16 m/s and 100 m/s, respectively, offers
a better assessment of the actual orbital departures. The direction of the implemented maneuver, i.e.,
type ’A’ or type ’B’ directions are more important in identifying departing trajectories along with
the magnitude of the maneuvers. Similar to identifying the time for departure for unstable orbits as
in Figure 5, the time at which the departure conditions are satisfied are also recorded for trajectories
that incorporate maneuvers delivered along the maximum stretching directions. Figures 7(a), 7(b),
7(c) and 7(d), correspond to the times to departure, for cases with maneuver magnitudes of 1 m/s, 4
m/s, 16 m/s and 100 m/s, respectively. These times correspond to the first instance when the |∆MI|
value exceeds the 10−1 value as illustrated in Figures 6(b), 6(d), 6(f) and 6(h), respectively. In
Figure 6(b), maneuvers of magnitude 1 m/s delivered along type ’A’ (colored in blue) and type ’B’
(colored in red) directions, and across different location on the NRHO are successful in departing
over the propagated duration. Certain trajectories depart as rapidly as 7 days after the onset of the
propagation, while most of the trajectories depart within 50 days of the initiation of propagation.
Such departure times are easily assessed in comparison to departure along the unstable manifold
that require at least 50 days to depart. Type ’A’ directions are loosely aligned away from the orbit
velocity directions while type ’B’ directions includes significant components in the velocity direc-
tion. With an increase in the maneuver magnitudes, the behavior of the trajectories along the type
’A’ and type ’B’ maneuver directions bifurcate. For a significantly large maneuver magnitude of
100 m/s, as in Figure 7(d), most trajectories along the type ’A’ direction do not depart the NRHO
vicinity in the propagated time duration. By virtue of the direction of maneuver, a loss in energy
results in the trajectories remaining captured in the lunar vicinity, rather than the broader Earth-
Moon space. Even trajectories propagated with a 100 m/s maneuver magnitude along the type ’A’
direction, for departure locations near the Moon, remain in Lunar orbits as illustrated in Figure 8.
In contrast, the maneuvers along type ’B’ directions elevates the rate of departure, and most trajec-
tories depart within 10 days of propagation. Especially for larger maneuver magnitudes, the stark
contrast between the behavior of trajectories after maneuvers are delivered in type ’A’ and type ’B’
directions, are evident in Figure 6(h). The |∆MI| value for trajectories that leverage type ’A’ ma-
neuver directions offer periodic behavior and boundedness, while |∆MI| value for trajectories that
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leverage type ’B’ maneuver directions increase rapidly before approaching an asymptotic behavior
as the spacecraft continuously deviates away from the Earth-Moon vicinity in a spiral behavior as
observed in the rotating frame of view.

(a) Configuration space (|∆v̄| = 1 m/s) (b) ∆MI along trajectories after |∆v̄| = 1 m/s maneuver

(c) Configuration space (|∆v̄| = 4 m/s) (d) ∆MI along trajectories after |∆v̄| = 4 m/s maneuver

(e) Configuration space (|∆v̄| = 16 m/s) (f) ∆MI along trajectories after |∆v̄| = 16 m/s maneuver

(g) Configuration space (|∆v̄| = 100 m/s) (h) ∆MI along trajectories after |∆v̄| = 100 m/s maneuver

Figure 6: Trajectories in configuration space after maneuver along most stretching direction, and
their corresponding ∆MI values.
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(a) |∆v̄| = 1 m/s (b) |∆v̄| = 4 m/s

(c) |∆v̄| = 16 m/s (d) |∆v̄| = 100 m/s

Figure 7: Time to departure for trajectories perturbed from the reference NRHO with maneuvers of
different magnitudes. Blue asterisks (*) corresponds to direction type ’A’ while red asterisks (*) to
type ’B’.

Figure 8: Trajectories captured near
Moon vicinity

Maneuvers along velocity, normal and co-normal
(VNC) directions to assist in departure are investigated by
Davis et al.32 Maneuvers delivered along the rotating ve-
locity directions for the NRHO, implemented close to the
periapsis region, offers faster departure.32 Similar results
are observed in this investigation, where maneuvers de-
livered along the type ’B’ directions, aligned close to the
rotating velocity direction, is more conducive to rapid de-
parture. Maximum stretching direction type ’B’ are cor-
related with rapid departure relative to type ’A’, however,
for smaller maneuver magnitudes even type ’A’ directions
can offer departure with marginally larger times of flight.

TRANSFER TRAJECTORY DESIGN

The ability to depart an orbit serves as a preliminary
step to design transfers between two regions in space. In a
nonlinear system it is challenging to determine the initial
states that drive the spacecraft to the desired final location. Transfers between stable regions in space
have utilized intermediate arcs of known orbits, including resonant orbits, as well as the underlying
manifold structures of nearby unstable orbits. In the nonlinear CR3BP, there are numerous solutions
that may offer suitable options for transfers, however, a preliminary notion of the most productive
types of intermediate orbits is nontrivial. Furthermore, transfer options are most likely restricted to
evolve along the underlying structures that are incorporated. Direct transfers that employ a shooting
algorithm to transfer between orbits are also offered in the literature, however, a suitable initial
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guess for the shooting algorithm may not be intuitive. Thus, the application of direct transfers may
be restricted to orbits that are nearby in configuration space. In addition, incorporating only two
maneuvers along the transfer arc, i.e., a departure and an arrive maneuver may not necessarily be
the most cost-effective option. Maps offer useful information to bridge this challenge by reducing
the number of free variables. The primary motivation of this investigation is a demonstration of
maximum stretching direction as a tool to assist in transfer trajectory design. In this investigation,
for stable orbits, in the absence of well-defined unstable and stable manifold structures, maneuvers
are delivered along the maximum stretching directions and the updated states are propagated until
a pre-selected hyperplane crossing. Selection of an hyperplane is application-specific. For maps
in this investigation, position and velocity states at the hyperplane crossings are recorded. Velocity
components may be included in terms of glyphs if necessary,33, 34 however, glyphs are not included
in this work. A combination of trajectory crossings and manifold crossings are also an option
subject to the type of departure and arrival orbit and their stability characteristics. It is desirable for
the transfer trajectory design process to determine an appropriate combination of crossings for the
departure arcs and the arrival arcs at the hyperplane, with small discontinuities in the position and
velocity states. An optimization scheme is introduced to generate a continuous transfer between the
departure orbit and the arrival orbit that leverages the departure and arrival arc determined from the
map.14 A schematic representation of the transfer trajectory optimization process is illustrated in
Figure 9. For reference, the orbit colored in cyan is the departure orbit while orbit in magenta is the
arrival orbit. The intermediate departure and arrival arcs are colored in blue and red, respectively.
In this investigation, the transfer design process employs three impulsive maneuvers, i.e., ∆v̄dep to
transition from the departure orbit to the departure arc, an intermediate maneuver, ∆v̄int, to progress
from the departure arc to the arrival arc, and finally ∆v̄arr to transition from the arrival arc to the
arrival orbit. An optimization scheme minimizes the cost function, J , such that

min J = |∆v̄dep|+ |∆v̄int|+ |∆v̄arr| (8)

=
√

∆v̄T
dep∆v̄dep +

√
∆v̄T

int∆v̄int +
√

∆v̄T
arr∆v̄arr (9)

i.e., the sum of total maneuver magnitudes, |∆v̄|. Here,

∆v̄dep = v̄dep−arc(t = 0) − v̄dep−orbit(t = τ1) (10)
∆v̄int = v̄arr−arc(t = 0) − v̄dep−arc(t = ToFdep) (11)
∆v̄arr = v̄arr−orbit(t = τ2) − v̄arr−arc(t = ToFarr) (12)

Figure 9: Schematic for transfer trajectory opti-
mization.

such that ToFdep is the time of flight along
the departure arc prior to ∆v̄int, while
ToFarr is the time of flight along the arrival
arc after ∆v̄int and prior to ∆v̄arr. The to-
tal time of flight for the transfer is the sum of
ToFdep and ToFarr. The initial and the final
position states are constrained to remain on
the departure and arrival orbits, respectively.
In the optimization process, the departure and
the arrival position states are free to advance
along the orbit and may differ from the initial guess. To constrain the departure and the arrival
position states on the orbit, an additional τ constraint is incorporated, such that τ1 and τ2 are certain
time durations from a fixed location along the departure and arrival orbits, respectively. Locally
optimal solutions are generated that resemble the geometry predicted by the initial guess.
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Transfers between L2 Southern 9:2 Synodic Resonant NRHO to L2 Northern 9:2 Synodic
Resonant NRHO

The 9:2 synodic resonant orbit in the southern and northern L2 NRHO families are a current focus
for various mission scenarios, primarily due to close passages near the polar regions of the Moon
and the relatively stable nature of the orbit. A transfer between the two stable orbits is designed
using maneuvers delivered along the maximum stretching directions. Due to very small unstable
eigenvalue for the flow along these NRHOs, the rate of departure is very low. As observed in
Figure 5, leveraging manifold structures may take a significantly longer duration to depart and the
numerical eigenvectors may not be precisely accurate. Maneuvers are delivered along the maximum
stretching direction at various locations along the orbit, measured in terms of an osculating true
anomaly.11, 12 Maneuvers of fixed magnitude are delivered along both sets of maximum stretching
directions, type ’A’ and type ’B’, and the updated states are propagated for a significantly long
duration. These trajectories intersect with the selected hyperplanes on multiple occasions. Each
crossing at the hyperplane is recorded to generate a comprehensive map. For the transfer between
the L2 southern 9:2 synodic resonant NRHO and the L2 northern 9:2 synodic resonant NRHO, two
different hyperplanes are considered, the xy-plane and the xz-plane. The 2-sided plane crossings
are recorded, i.e., in the positive and the negative velocity directions. Figure 10(a) demonstrates
the crossings of each of these trajectories propagated from various locations along the NRHO orbits

(a) xy-plane crossing map

(b) xz-plane crossing map

Figure 10: Two sided plane crossing
maps. Blue asterisks (*) correspond
to departure arcs from southern NRHO
propagated forwards in time, while red
asterisks (*) correspond to arrival arcs
from northern NRHO propagated back-
wards in time. Map for |∆v̄| = 1 m/s.

to the z = 0 hyperplane, i.e., on the xy plane. Similarly,
Figure 10(b) demonstrates the crossings on the y = 0 hy-
perplane, i.e., on the xz plane. Blue asterisks (*) corre-
spond to the crossings along the departure arcs that are
propagated from the 9:2 synodic resonant L2 southern
NRHO forwards in time, while red asterisks (*) corre-
spond to crossings along arrival arcs from the 9:2 synodic
resonant L2 northern NRHO that are propagated back-
wards in time. Along a forward propagated segment,
the maximum stretching directions are computed from
the submatrix of the monodromy matrix, i.e., the matrix
ϕC,rv,v(℘, 0). In contrast, for a backwards propagated
segment, the maximum stretching directions are computed
from the submatrix ϕC,rv,v(0, ℘). Here, ℘ is the time pe-
riod corresponding the 9:2 synodic resonant southern and
northern L2 NRHO. Common practise for transfer trajec-
tory design is to transition from the departure arc to the
arrival arc at the hyperplane. Thus, an appropriate choice
is the selection of the combination of a departure cross-
ing and an arrival crossing on the hyperplane with a small
state change, in position and velocity. The maps in Figure
10 are generated by propagating departure arc and arrival
arc following departure and arrival maneuvers of size |∆v̄|
= 1 m/s. Maps that result from other |∆v̄| values also of-
fer conducive transfers. Besides, the |∆v̄| value along the
departure arc and the arrival arc need not be of the same
magnitude. In the case of transfers between southern and
northern NRHO of the same size, the |∆v̄| value along the
departure arc and the arrival arc are the same to exploit the
underlying similarity and symmetry in the maps.
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Combinations of departure and arrival arc crossings on the maps, as in Figure 10, and near the
Moon offer interior transfers, i.e., loosely characterized by the trajectory remaining in the proximity
of the region of interest.35 Of course, several combinations of departure and arrival arcs are possible.
These combinations offer reliable initial guesses for transfer trajectory design. The combination of
departure and arrival crossings on the maps may not be continuous in position and velocity. An
optimization scheme, as illustrated previously, is adopted to generate a continuous transfer with
three maneuvers, ∆v̄dep, ∆v̄int and ∆v̄arr. Figures 11 and 12 are examples of locally optimal
interior transfers that possess similar geometry in configuration space (although constructed from
distinct initial guesses) but with marginally different times of flight. A different geometry for a
transfer that exploits motion along the L1 axial orbit is produced in Figure 13. Figure 14 offers
another geometry for a transfer with multiple loops on the L1 and L2 side of the Moon. The initial
guess for each of the locally optimal interior transfers in Figures 11, 12, 13 and 14 are identified
from the map in Figure 10(a) that is generated based of departure and arrival maneuver magnitudes
of 1 m/s. Of course, bridging the gap in the state vector on the map, the optimal maneuvers, |∆v̄dep|
and |∆v̄arr|, may not precisely the initial guess, i.e., 1 m/s. Cases with small position and velocity
discontinuities on the hyperplane crossing maps yield locally optimal solutions that are relatively
close to the initial guess. In contrast, cases where the departure and arrival crossings on the map that
possess larger discontinuity require larger maneuvers. The maneuver costs, as well as the times of
flight for each of the transfers in Figures 11, 12, 13 and 14, are detailed in Table 1. The osculating
true anomaly locations along the departure and arrival orbits for the locally optimal transfers are
also listed in Table 1.

(a) Isometric view (b) xy projection

Figure 11: Optimal transfer between L2 southern 9:2 synodic resonant NRHO to L2 northern 9:2
synodic resonant NRHO (Case 1).

Trajectories that depart the proximity of interests are loosely characterized as exterior transfers.35

Hyperplane crossing maps similar to Figure 10 are generated for departure and arrival maneuvers of
magnitude of 20 m/s, aligned in the maximum stretching directions for types ’A’ and ’B’. Of course,
maps for other maneuver magnitudes may also offer a range of transfer trajectory options. On the
y = 0 hyperplane map in Figure 10, i.e., the xz plane crossing map, a combination of departure
and arrival arc crossings are apparent in the negative x-direction. One set of such crossins is now
selected, one with relatively low position and velocity discontinuity. The selected combination of
departure and arrival arc crossing offers an initial guess that is optimized, to reduce maneuver costs
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and determine a trajectory continuous in position. Figure 15(a) is a locally optimal transfer between
the 9:2 synodic resonant southern L2 NRHO to the 9:2 synodic resonant northern L2 NRHO that
leverages an exterior type transfer. The transfer includes a single loop geometry around the Earth-
Moon system. Yet another combination of departure and arrival arc crossings with a positive x-
component are selected on the y = 0 hyperplane map, i.e., xz plane crossing map, with a relatively
low position and velocity discontinuity. The initial guess is optimized to deliver a locally optimal
transfer trajectory as plotted in Figure 15(b). The optimal trajectory incorporates a double loop
geometry around the Earth-Moon system in contrast to single loop geometry for the optimal transfer
in Figure 15(a). Not surprisingly, the time of flight for the transfer in Figure 15(b) is longer, however,
the overall maneuver costs for both exterior type transfers demonstrated here are comparable. The
details of the maneuver costs, times of flight and the osculating true anomaly for the departure and
arrival locations on the corresponding orbits are summarized in Table 1. The exterior type transfers
are generated from 20 m/s maneuvers delivered along the maximum stretching directions, therefore,
trajectories depart or arrive the vicinity of the NRHOs more rapidly and sometimes offer shorter
transfer time options. The times of flight and the maneuver costs associated with the transfers
are influenced heavily by the combinations selected on the hyperplane crossing maps rather than
the initial guess for the departure and arrival maneuver magnitudes alone. Since the 9:2 synodic
resonant southern and northern NRHO possess the same energy, in theory, a ballistic transfer may
exist.35

(a) Isometric view (b) xy projection

Figure 12: Optimal transfer between L2 southern 9:2 synodic resonant NRHO to L2 northern 9:2
synodic resonant NRHO (Case 2).

An infinitely many transfer trajectory design options are possible, both interior type and exte-
rior type, and different transfer types can adapt to various constraints. Different combinations of
departure and arrival arc crossings on different hyperplanes offer different solutions. In addition,
various magnitudes for departure and arrival maneuvers alter the hyperplane crossing maps, yield-
ing alternate solutions. The examples in this investigation demonstrate the capability of leveraging
the maximum stretching directions for transfer trajectory design to transition between relatively sta-
ble orbits. Some of the transfer geometries are consistent with low-thrust transfers available in the
literature, along with some that leverage resonant structures.6, 7, 35, 36
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(a) Isometric view (b) xy projection

Figure 13: Optimal transfer between L2 southern 9:2 synodic resonant NRHO to L2 northern 9:2
synodic resonant NRHO (Case 3).

(a) Isometric view (b) xy projection

Figure 14: Optimal transfer between L2 southern 9:2 synodic resonant NRHO to L2 northern 9:2
synodic resonant NRHO (Case 4).

Transfers between L2 Southern 9:2 Synodic Resonant NRHO to Distant Retrograde Orbit
(DRO)

The Lunar Distant Retrograde Orbits are also an interesting possibility for upcoming missions,
primarily due to their proximity to the Moon and the stable nature of the orbits. Here, a transfer
between the two nearly stable orbits, the 9:2 synodic resonant southern L2 NRHO and the 70,000
km Lunar DRO, are leveraged using initial guesses from maneuvers delivered along the maximum
stretching directions. The DRO periapsis distance is 70,000 km from the Moon, measured along the
x-axis towards the Earth. The orbit is defined by a time period of 13.934 days, a Jacobi constant
value of 2.929 and are linearly stable with stability indices of -0.717, 0.107 and 1. Similar to the
southern NRHO to northern NRHO transfers, a map is generated with maneuvers that are delivered
along the maximum stretching directions at various locations along the orbit. For the DRO, due
to the relatively consistent angular rate of rotation along the orbit measured with respect to the
Moon, define an angle κ as the fraction of the time along the orbit relative to a fixed reference
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(a) Case 5

(b) Case 6

Figure 15: Optimal transfer between L2 southern 9:2 synodic resonant NRHO to L2 northern 9:2
synodic resonant NRHO.

(i.e., the periapsis direction in the negative x-direction) and serves as a simple metric to determine
the spacecraft location along the orbit. Maneuvers of fixed magnitudes are delivered along both
sets of maximum stretching directions, type ’A’ and type ’B’, for both the NRHO and the DRO,
and the updated states are propagated for a significantly long duration. The DRO is planar, thus,
all the states lie in the xy plane. A z = 0 hyperplane, i.e., the xy plane, is incorporated with all
trajectories emerging from the DRO propagated backwards in time, and all the xy plane crossings
for the trajectories emerging from the NRHO propagated forwards in time. A semi-automated
scheme determines a departure arc and an arrival arc at the hyperplane crossing.14 Within a region
of interest on the map, the algorithm solves for the value of

J =

∣∣∣∣[ α∆r̄
(1− α)∆v̄

]∣∣∣∣
for each combination of departure and arrival states on the hyperplane. A combination that mini-
mizes the value of J is preferred. Here, ∆r̄ and ∆v̄ are the position and velocity discontinuities
between the departure arc and the arrival arc at the hyperplane crossing, while α is a scaling factor
to selectively control the position and velocity discontinuity. For crossings that are further from the
primary bodies, the optimization algorithm compensates for a relatively larger position error, hence,
a relatively smaller α ∈ [0.5, 0.9] is used. For crossings that are closer to the primary bodies, a
smaller position discontinuity is essential for the optimization algorithm, hence a value of α ≥ 0.9
is favorable. Multiple maps are generated by propagating departure arcs and arrival arcs following
maneuvers of various |∆v̄| sizes; an example appears in Figure 16. Different combinations of the
departure and the arrival crossings on the maps offer different transfer geometries.
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Table 1: Optimal transfers between 9:2 synodic resonant southern L2 NRHO to 9:2 synodic reso-
nant northern L2 NRHO.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Figure 11 Figure 12 Figure 13 Figure 14 Figure 15(a) Figure 15(b)

|∆v̄dep| [m/s] 3.59 2.05 0.88 10.12 27.32 112.34
|∆v̄int| [m/s] 0.00 0.00 0.00 0.00 188.55 0.00
|∆v̄arr| [m/s] 3.59 2.27 0.88 10.04 27.39 112.36

|∆v̄Total| [m/s] 7.18 4.33 1.76 20.17 243.25 224.70

ToFdep [days] 50.08 54.95 61.10 62.35 36.99 58.44
ToFarr [days] 50.08 54.68 61.07 62.19 36.99 58.43

ToFTotal [days] 100.16 109.62 122.17 124.54 73.98 116.87

TAdep [deg] 175.52 154.68 164.57 148.27 67.13 193.02
TAarr [deg] 174.84 201.88 195.39 207.49 292.59 166.97

Figure 16: Two sided plane crossing maps. Blue
dots (.) correspond to departure arc crossings
from southern NRHO propagated forwards in
time with |∆v̄| = 5 m/s, while red dots (.) corre-
spond to arrival arcs from DRO propagated back-
wards in time with |∆v̄| = 20 m/s.

Certain combinations of the departure and ar-
rival arc crossings on the hyperplane that are
near the Moon, as in Figure 16, offer interior
type transfers. There are infinitely many com-
binations of departure and arrival arcs that are
possible. A selected combination offers a re-
liable initial guess for transfer trajectory design
between the NRHO and the DRO. An optimiza-
tion scheme generates a continuous transfer
with three maneuvers, ∆v̄dep, ∆v̄int and ∆v̄arr.
Figures 17(a), 17(b) and 17(c) are examples
of locally optimal interior transfers where the
spacecraft remains in the Lunar vicinity. The
initial guess corresponding to Figure 17(a) is
extracted from a map generated by propagating
trajectories from the NRHO with a maneuver of
magnitude 1 m/s along the maximum stretch-
ing directions; similarly trajectories are propa-
gated backwards in time from the DRO along
the maximum stretching direction with a ma-
neuver of 1 m/s. Figure 17(b) is an outcome
from the map corresponding to maneuvers of
magnitude 5 m/s and 20 m/s delivered on the
NRHO and the DRO, respectively. Finally, a
map with a maneuver magnitude of 20 m/s delivered on both the NRHO and the DRO, yields a
geometry that resembles Figure 17(c). As stated previously, the optimal maneuvers, |∆v̄dep| and
|∆v̄arr|, are not precisely the same as the initial guesses, nor necessarily precisely aligned along the
maximum stretching directions. The maneuver costs, as well as the time of flight for each of the
transfers in Figure 17 are listed in Table 2. The osculating true anomaly locations along the depar-
ture NRHO, and the location corresponding to angle κ on the arrival DRO for the locally optimal
transfers are also listed. For the transfers between two NRHOs that are similar in energy levels, a
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 17: Interior type locally optimal transfer between L2
southern 9:2 synodic resonant NRHO to 70,000 km DRO.

ballistic transfer may exist, how-
ever, for the transfer between
the 3200 km L2 NRHO and the
70,000 km DRO, each possess-
ing a different energy level, a
ballistic transfer does not exist.
A theoretical minimum |∆v̄| is
required to raise the energy level
from the NRHO to meet the en-
ergy level for the DRO. A theo-
retical minimum |∆v̄| is calcu-
lated, such that |∆v̄| = 35.48
m/s must be delivered at the pe-
riapsis of the NRHO or |∆v̄| =
261.86 m/s at the apoapsis of the
NRHO to meet the energy level
for the DRO.7, 14

Intersections of the departure
and arrival arcs on the hyper-
plane further from the Moon
offer exterior transfers. Hy-
perplane crossing maps simi-
lar to Figure 16 are generated
for departure and arrival maneu-
ver magnitude of 20 m/s and
40 m/s along the NRHO and
the DRO, respectively. The
maneuvers are delivered in the
maximum stretching directions,
type ’A’ and type ’B’. Two dif-
ferent combinations of depar-
ture and arrival crossings on the
map yield transfer geometries as
observed in Figures 18(a) and
18(c). In contrast, an optimal
exterior type geometry in Figure
18(b) is extracted from an initial
guess on the map generated by
maneuvers of magnitude 20 m/s
to depart the NRHO and arrive
on the DRO. Maps generated by
other maneuver magnitudes may
offer other transfer trajectory options. Figure 18(a) illustrates spacecraft motion near the Earth
vicinity while Figures 18(b) and 18(c) include trajectories that leave further from the Earth-Moon
vicinity. The maneuver costs, time of flight and the locations on the orbit for departure and arrival
are listed in Table 2. Recall that the NRHO orbit and the DRO orbit possess different energy levels
and, as a result, a ballistic transfer is not possible in the CR3BP. A theoretical minimum |∆v̄| is
required to match the energy levels.
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(a) Case 4

(b) Case 5

(c) Case 6

Figure 18: Exterior type locally optimal transfer between L2
southern 9:2 synodic resonant NRHO to 70,000 km DRO.

Various transfer methodolo-
gies have been explored for
transfers between the NRHO
and the DRO in the literature,
including low thrust trajectories,
intermediate resonant structures
and other known orbits.6–10, 36

The examples in this investiga-
tion demonstrate the capability
of leveraging maximum stretch-
ing directions for transfer tra-
jectory design process to tran-
sition between a 3-dimensional
NRHO to a planar DRO, without
any prior knowledge of existing
intermediate structures. Some
of the transfer geometries, times
of flight and maneuver costs are
consistent with the literature.

CONCLUDING REMARKS

The current focus is on the
Gateway mission, that poten-
tially hosts humans on-board
and is expected to remain in an
almost stable 9:2 synodic res-
onant orbit in the southern L2
NRHO family. An approach
suitable to transfer from the
baseline NRHO to various lo-
cations relatively quickly while
avoiding collisions with any ve-
hicles is of relevance. The focus
of this investigation is to lever-
age the maximum stretching di-
rection as a tool to facilitate de-
parture from the NRHO.

Stretching directions are a useful tool that assists in visualizing dynamical flow near a reference
orbit. The maximum stretching directions, are leveraged for two contrasting applications. Station-
keeping maneuvers as demonstrated by Muralidharan and Howell11, 12, 14 that are perpendicular to
the maximum stretching directions minimize the magnitude of deviation from the reference orbit,
while the orbit departure problem leverages maneuvers aligned in the maximum stretching direction
to deliberately deviate from the reference orbit, and to eventually arrive on some destination orbit.
Along a departure arc, propagated forwards in time, the maximum stretching direction offers the
direction along which a maneuver delivers the maximum magnitude of state variation at final time.
Similarly, the maximum stretching direction along a backward propagated arc, offers the region
with maximum access to arrive on the orbit of interest with the smallest maneuver, in a linear sense.
Such a tool is demonstrated for transfers between nearly stable orbits; a 3-dimensional southern
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NRHO to a 3-dimensional northern NRHO, as well as a 3-dimensional NRHO to a planar DRO.

Table 2: Optimal transfers between 9:2 synodic resonant southern L2 NRHO to 7000O km DRO.

Parameter
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Figure Figure Figure Figure Figure Figure
17(a) 17(b) 17(c) 18(a) 18(b) 18(c)

|∆v̄dep| [m/s] 4.03 3.81 15.06 12.41 4.41 18.62
|∆v̄int| [m/s] 355.51 306.24 172.71 81.38 120.30 296.08
|∆v̄arr| [m/s] 12.69 18.77 148.19 106.35 18.16 36.72

|∆v̄Total| [m/s] 372.23 328.81 335.97 200.14 142.88 351.41

ToFdep [days] 44.42 50.29 28.28 63.15 54.36 36.51
ToFarr [days] 6.96 64.49 49.69 78.81 111.52 130.65

ToFTotal [days] 51.39 114.79 77.97 141.96 165.88 167.15

TAdep [deg] 37.75 7.85 255.08 129.27 339.64 354.57
κ [deg] 330.09 165.35 302.78 295.29 137.79 356.64
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