Reference : Liquid Crystal Shells: from Physics Mysteries, via Chemistry Challenges, to Biosensin...
Dissertations and theses : Doctoral thesis
Physical, chemical, mathematical & earth Sciences : Physics
Physics and Materials Science
http://hdl.handle.net/10993/47789
Liquid Crystal Shells: from Physics Mysteries, via Chemistry Challenges, to Biosensing Opportunities
English
Sharma, Anjali mailto [University of Luxembourg > Faculty of Science, Technology and Medecine (FSTM) > >]
28-May-2021
University of Luxembourg, ​Luxembourg, ​​Luxembourg
DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN PHYSIQUE
178
Lagerwall, Jan mailto
Sengupta, Anupam mailto
ABBOTT, Nicholas mailto
SERRA, Francesca mailto
KRISHNAMOORTHY, Sivashankar mailto
[en] Liquid crystals ; Shells ; Sensing
[en] Liquid crystals (LCs) confined in a spherical geometry between two aqueous phases, i.e.,
a shell, exhibit unavoidable topological defects, real or virtual. In fact, the presence of defects,
and their configuration, on the shell are dictated by the LC alignment at the LC-water
boundaries. With tangential alignment of the LC, we have a total of +2 defect strength on
each interface, which can be distributed either over four +1/2 defects or a combination of
+1 and +1/2 defects. In contrast, when the LC is radially aligned, the shell is defect free
(but one can extrapolate the director field into a virtual point defect in the internal isotropic
phase). The LC alignment can be tuned by adding a suitable solute in the aqueous phase.The
vast majority of studies have used sodium dodecyl sulfate (SDS) for this purpose, with only
a few studies employing other surfactants. We investigate various other surfactants with
a positive and negative head group charge by varying alkyl chain length. Here, we focus
on the minimum surfactant concentration required (below the critical micelle concentration
(CMC)) for the stability of the shells as well as for ensuring the radial alignment. It
turns out that surfactants at a low concentration do not necessarily impose radial alignment.
However, they provide stability by decreasing the interfacial tension. Once the surfactant
concentration is above the CMC, surfactant forms micelles in water. When these micelles
are in the outer aqueous phase of the hybrid aligned shells, the LC alignment changes from
hybrid to radial on cooling below the Krafft temperature (TK), below which the surfactant
solubility is lower than CMC. Interestingly, on heating above TK, the LC alignment changes
back to hybrid. It turns out that the adsorption and desorption of micelles as a result of
changed solubility in water with temperature give rise to the change in the LC alignment.
Next, we replace surfactant with lipids. We add lipids in the form of vesicles in the aqueous
phase of pre-tangentially aligned LC shells. After some time these shells develop small
spindle-shaped islands, and these islands merge and grow with time, and they even interact
in intriguing ways across the LC, from the inside to the outside. After exploring various
solutes in the aqueous phase, we change our LC phase from nematic to smectic A and C
phases. In the smectic A phase, lunes on the shell occur due to the change in the shell cross
section area from the inner to the outer interface. In this context, we present the first study
on tangentially and hybrid aligned smectic C shells. The most studied LC mesogens in the
shell geometry contain cyano and biphenyl groups. To test whether this is important, I also
made shells with cyclohexane core mesogens. In contrast to the cyanobiphenyl-based LCs,
this LC aligns radially regardless of solutes added into the aqueous phases. We investigate
in detail and find that a cyano group at the terminal supports shell stability and while the
aromatic rings in most LCs, for instance having a biphenyl core, give rise to the tangential
alignment when in contact with surfactant-free water.
Fonds National de la Recherche - FnR
Researchers ; Professionals ; Students ; General public
http://hdl.handle.net/10993/47789
FnR ; FNR10935404 > Emmanuel Defay > MASSENA > Materials For Sensing And Energy Harvesting > 01/10/2016 > 31/03/2023 > 2015

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Limited access
Sharma.pdfAuthor postprint311.2 MBRequest a copy

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.