Article (Périodiques scientifiques)
Application of Raman Spectroscopy for Detection of Histologically Distinct Areas in Formalin-fixed Paraffin-embedded (FFPE) Glioblastoma
Klamminger, Gilbert Georg; GERARDY, Jean-Jacques; Jelke, Finn et al.
2021In Neuro-Oncology Advances
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
vdab077.pdf
Preprint Auteur (894.68 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Raman spectroscopy; Glioma; Machine Learning
Résumé :
[en] Background Although microscopic assessment is still the diagnostic gold standard in pathology, non-light microscopic methods such as new imaging methods and molecular pathology have considerably contributed to more precise diagnostics. As an upcoming method, Raman spectroscopy (RS) offers a "molecular fingerprint" which could be used to differentiate tissue heterogeneity or diagnostic entities. RS has been successfully applied on fresh and frozen tissue, however more aggressively, chemically treated tissue such as formalin-fixed, paraffin-embedded (FFPE) samples are challenging for RS. Methods To address this issue, we examined FFPE samples of morphologically highly heterogeneous glioblastoma (GBM) using RS in order to classify histologically defined GBM areas according to RS spectral properties. We have set up a SVM (support vector machine)-based classifier in a training cohort and corroborated our findings in a validation cohort. Results Our trained classifier identified distinct histological areas such as tumor core and necroses in GBM with an overall accuracy of 70.5% based on spectral properties of RS. With an absolute misclassification of 21 out of 471 Raman measurements, our classifier has the property of precisely distinguishing between normal appearing brain tissue and necrosis. When verifying the suitability of our classifier system in a second independent dataset, very little overlap between necrosis and normal appearing brain tissue can be detected. Conclusion These findings show that histologically highly variable samples such as GBM can be reliably recognized by their spectral properties using RS. As a conclusion, we propose that RS may serve useful as a future method in the pathological toolbox.
Disciplines :
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Klamminger, Gilbert Georg
GERARDY, Jean-Jacques ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Jelke, Finn
Mirizzi, Giulia
Slimani, Rédouane
Klein, Karoline
HUSCH, Andreas  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Interventional Neuroscience
HERTEL, Frank ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
MITTELBRONN, Michel ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Kleine-Borgmann, Felix B.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Application of Raman Spectroscopy for Detection of Histologically Distinct Areas in Formalin-fixed Paraffin-embedded (FFPE) Glioblastoma
Date de publication/diffusion :
2021
Titre du périodique :
Neuro-Oncology Advances
eISSN :
2632-2498
Maison d'édition :
Oxford University Press, Royaume-Uni
Peer reviewed :
Peer reviewed vérifié par ORBi
Intitulé du projet de recherche :
INSITU
Organisme subsidiant :
Fondation Cancer
Disponible sur ORBilu :
depuis le 02 juillet 2021

Statistiques


Nombre de vues
221 (dont 6 Unilu)
Nombre de téléchargements
107 (dont 0 Unilu)

citations Scopus®
 
12
citations Scopus®
sans auto-citations
9
OpenCitations
 
2
citations OpenAlex
 
15
citations WoS
 
12

Bibliographie


Publications similaires



Contacter ORBilu