Article (Périodiques scientifiques)
Identification and classification of ncRNA molecules using graph properties.
Childs, Liam; Nikoloski, Zoran; MAY, Patrick et al.
2009In Nucleic Acids Research, 37 (9), p. 66
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Nucl. Acids Res.-2009-Childs-e66.pdf
Postprint Éditeur (291.42 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Algorithms; Computer Graphics; Nucleic Acid Conformation; RNA, Untranslated/chemistry/classification; Sequence Alignment; Sequence Analysis, RNA; Software
Résumé :
[en] The study of non-coding RNA genes has received increased attention in recent years fuelled by accumulating evidence that larger portions of genomes than previously acknowledged are transcribed into RNA molecules of mostly unknown function, as well as the discovery of novel non-coding RNA types and functional RNA elements. Here, we demonstrate that specific properties of graphs that represent the predicted RNA secondary structure reflect functional information. We introduce a computational algorithm and an associated web-based tool (GraPPLE) for classifying non-coding RNA molecules as functional and, furthermore, into Rfam families based on their graph properties. Unlike sequence-similarity-based methods and covariance models, GraPPLE is demonstrated to be more robust with regard to increasing sequence divergence, and when combined with existing methods, leads to a significant improvement of prediction accuracy. Furthermore, graph properties identified as most informative are shown to provide an understanding as to what particular structural features render RNA molecules functional. Thus, GraPPLE may offer a valuable computational filtering tool to identify potentially interesting RNA molecules among large candidate datasets.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Childs, Liam
Nikoloski, Zoran
MAY, Patrick  ;  Max Planck Institute for Molecular Plant Physiology > Bioinformatics
Walther, Dirk
Langue du document :
Anglais
Titre :
Identification and classification of ncRNA molecules using graph properties.
Date de publication/diffusion :
2009
Titre du périodique :
Nucleic Acids Research
ISSN :
0305-1048
eISSN :
1362-4962
Maison d'édition :
Oxford University Press, Royaume-Uni
Volume/Tome :
37
Fascicule/Saison :
9
Pagination :
e66
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 23 avril 2013

Statistiques


Nombre de vues
145 (dont 2 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
47
citations Scopus®
sans auto-citations
46
OpenCitations
 
34
citations OpenAlex
 
57
citations WoS
 
41

Bibliographie


Publications similaires



Contacter ORBilu