Article (Scientific journals)
Training very deep neural networks: Rethinking the role of skip connections
OYEDOTUN, Oyebade; AL ISMAEIL, Kassem; AOUADA, Djamila
2021In Neurocomputing
Peer Reviewed verified by ORBi
 

Files


Full Text
OyedotunAl IsmaeilAouada_NeurocomputingJournal.pdf
Author preprint (1.29 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Deep neural network; Residual learning; Skip connection; Optimization
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Computer science
Author, co-author :
OYEDOTUN, Oyebade ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AL ISMAEIL, Kassem ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
External co-authors :
no
Language :
English
Title :
Training very deep neural networks: Rethinking the role of skip connections
Publication date :
21 June 2021
Journal title :
Neurocomputing
ISSN :
0925-2312
eISSN :
1872-8286
Publisher :
Elsevier, Amsterdam, Netherlands
Peer reviewed :
Peer Reviewed verified by ORBi
FnR Project :
FNR11295431 - Automatic Feature Selection For Visual Recognition, 2016 (01/02/2017-31/01/2021) - Oyebade Oyedotun
Funders :
FNR - Fonds National de la Recherche
Available on ORBilu :
since 20 June 2021

Statistics


Number of views
335 (18 by Unilu)
Number of downloads
436 (8 by Unilu)

Scopus citations®
 
23
Scopus citations®
without self-citations
23
OpenCitations
 
2
OpenAlex citations
 
23
WoS citations
 
19

Bibliography


Similar publications



Contact ORBilu