Article (Périodiques scientifiques)
Lessons Learnt on Reproducibility in Machine Learning Based Android Malware Detection
DAOUDI, Nadia; ALLIX, Kevin; BISSYANDE, Tegawendé François D Assise et al.
2021In Empirical Software Engineering, 26
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Daoudi2021_Article_LessonsLearntOnReproducibility.pdf
Postprint Éditeur (2.47 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Android malware detection; Reproducibility; Replicability; Machine learning
Résumé :
[en] A well-known curse of computer security research is that it often produces systems that, while technically sound, fail operationally. To overcome this curse, the community generally seeks to assess proposed systems under a variety of settings in order to make explicit every potential bias. In this respect, recently, research achievements on machine learning based malware detection are being considered for thorough evaluation by the community. Such an effort of comprehensive evaluation supposes first and foremost the possibility to perform an independent reproduction study in order to sharpen evaluations presented by approaches’ authors. The question Can published approaches actually be reproduced? thus becomes paramount despite the little interest such mundane and practical aspects seem to attract in the malware detection field. In this paper, we attempt a complete reproduction of five Android Malware Detectors from the literature and discuss to what extent they are “reproducible”. Notably, we provide insights on the implications around the guesswork that may be required to finalise a working implementation. Finally, we discuss how barriers to reproduction could be lifted, and how the malware detection field would benefit from stronger reproducibility standards—like many various fields already have.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DAOUDI, Nadia ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
ALLIX, Kevin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Lessons Learnt on Reproducibility in Machine Learning Based Android Malware Detection
Date de publication/diffusion :
2021
Titre du périodique :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Maison d'édition :
Springer, Etats-Unis
Volume/Tome :
26
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR11693861 - Characterization Of Malicious Code In Mobile Apps: Towards Accurate And Explainable Malware Detection, 2017 (01/06/2018-31/12/2021) - Jacques Klein
Organisme subsidiant :
FNR - Fonds National de la Recherche
University of Luxembourg - UL
SPARTA
Luxembourg Ministry of Foreign and European Affairs
Disponible sur ORBilu :
depuis le 27 mai 2021

Statistiques


Nombre de vues
660 (dont 58 Unilu)
Nombre de téléchargements
313 (dont 25 Unilu)

citations Scopus®
 
22
citations Scopus®
sans auto-citations
15
OpenCitations
 
2
citations OpenAlex
 
21
citations WoS
 
14

Bibliographie


Publications similaires



Contacter ORBilu