Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Laser-Based Reactive Navigation for Multirotor Aerial Robots using Deep Reinforcement Learning
Sampedro, Carlos; BAVLE, Hriday; Rodriguez-Ramos, Alejandro et al.
2018IEEE/RSJ International Conference on Intelligent Robots and Systems
 

Documents


Texte intégral
Sampedro et al. - 2018 - Laser-Based Reactive Navigation for Multirotor Aerial Robots using Deep Reinforcement Learning-annotated.pdf
Postprint Éditeur (1.82 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Model Learning for Control; Reactive and Sensor-Bas
Résumé :
[en] Navigation in unknown indoor environments with fast collision avoidance capabilities is an ongoing research topic. Traditional motion planning algorithms rely on precise maps of the environment, where re-adapting a generated path can be highly demanding in terms of computational cost. In this paper, we present a fast reactive navigation algorithm using Deep Reinforcement Learning applied to multi rotor aerial robots. Taking as input the 2D-laser range measurements and the relative position of the aerial robot with respect to the desired goal, the proposed algorithm is successfully trained in a Gazebo-based simulation scenario by adopting an artificial potential field formulation. A thorough evaluation of the trained agent has been carried out both in simulated and real indoor scenarios, showing the appropriate reactive navigation behavior of the agent in the presence of static and dynamic obstacles.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Sampedro, Carlos
BAVLE, Hriday  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Rodriguez-Ramos, Alejandro
De La Puente, Paloma
Campoy, Pascual
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Laser-Based Reactive Navigation for Multirotor Aerial Robots using Deep Reinforcement Learning
Date de publication/diffusion :
2018
Nom de la manifestation :
IEEE/RSJ International Conference on Intelligent Robots and Systems
Date de la manifestation :
1-10-2018 to 5-10-2018
Commentaire :
9781538680940
Disponible sur ORBilu :
depuis le 19 mai 2021

Statistiques


Nombre de vues
131 (dont 2 Unilu)
Nombre de téléchargements
377 (dont 1 Unilu)

citations Scopus®
 
40
citations Scopus®
sans auto-citations
36
citations OpenAlex
 
45
citations WoS
 
32

Bibliographie


Publications similaires



Contacter ORBilu