Article (Périodiques scientifiques)
ANN-aided incremental multiscale-remodelling-based finite strain poroelasticity
DEHGHANI, Hamidreza; ZILIAN, Andreas
2021In Computational Mechanics
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s00466-021-02023-3.pdf
Postprint Éditeur (5.55 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
ANN for homogenisation and localisation; Remodelling of multiscale and multiphysics problems; Incremental finite strain poroelasticity; Data-driven computational mechanics; Deviation from Darcy’s law; Brain tissue modelling
Résumé :
[en] Mechanical modelling of poroelastic media under finite strain is usually carried out via phenomenological models neglecting complex micro-macro scales interdependency. One reason is that the mathematical two-scale analysis is only straightforward assuming infinitesimal strain theory. Exploiting the potential of ANNs for fast and reliable upscaling and localisation procedures, we propose an incremental numerical approach that considers rearrangement of the cell properties based on its current deformation, which leads to the remodelling of the macroscopic model after each time increment. This computational framework is valid for finite strain and large deformation problems while it ensures infinitesimal strain increments within time steps. The full effects of the interdependency between the properties and response of macro and micro scales are considered for the first time providing a more accurate predictive analysis of fluid-saturated porous media which is studied via a numerical consolidation example. Furthermore, the (nonlinear) deviation from Darcy’s law is captured in fluid filtration numerical analyses. Finally, the brain tissue mechanical response under the uniaxial cyclic test is simulated and studied.
Centre de recherche :
University of Luxembourg: Institute of Computational Engineering
Disciplines :
Science des matériaux & ingénierie
Ingénierie civile
Auteur, co-auteur :
DEHGHANI, Hamidreza ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
ZILIAN, Andreas  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
ANN-aided incremental multiscale-remodelling-based finite strain poroelasticity
Date de publication/diffusion :
mai 2021
Titre du périodique :
Computational Mechanics
ISSN :
0178-7675
eISSN :
1432-0924
Maison d'édition :
Springer, New York, Allemagne
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Computational Sciences
Projet FnR :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Intitulé du projet de recherche :
CDE-Hub, DTU Driven
Organisme subsidiant :
Fonds National de la Recherche - FnR (PRIDE17/12252781)
Luxembourg Ministry of Economy (FEDER 2018-04-024)
Disponible sur ORBilu :
depuis le 11 mai 2021

Statistiques


Nombre de vues
210 (dont 13 Unilu)
Nombre de téléchargements
108 (dont 2 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
11
OpenCitations
 
4
citations OpenAlex
 
16
citations WoS
 
15

Bibliographie


Publications similaires



Contacter ORBilu