Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A boundary-enhanced supervoxel method for extraction of road edges in MLS point clouds
Sha, Zhengchuan; Chen, Yiping; Li, Wen et al.
2020In A boundary-enhanced supervoxel method for extraction of road edges in MLS point clouds
Peer reviewed
 

Documents


Texte intégral
A_BOUNDARY-ENHANCED_SUPERVOXEL_METHOD_FOR_EXTRACTI.pdf
Postprint Éditeur (1.78 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mobile laser scanning; point cloud; road edge; detection; supervoxel
Résumé :
[en] Road extraction plays a significant role in production of high definition maps (HD maps). This paper presents a novel boundary-enhanced supervoxel segmentation method for extracting road edge contours from MLS point clouds. The proposed method first leverages normal feature judgment to obtain 3D point clouds global geometric information, then clusters points according to an existing method with global geometric information to enhance the boundaries. Finally, it utilizes the neighbor spatial distance metric to extract the contours and drop out existing outliers. The proposed method is tested on two datasets acquired by a RIEGL VMX-450 MLS system that contain the major point cloud scenes with different types of road boundaries. The experimental results demonstrate that the proposed method provides a promising solution for extracting contours efficiently and completely. Results show that the precision values are 1.5 times higher and approximately equal than the other two existing methods when the recall value is 0 for both tested two road datasets.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Sha, Zhengchuan;  Xiamen University, Xiamen, Fujian, China > Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics
Chen, Yiping;  Xiamen University, Xiamen, Fujian, China > Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics
Li, Wen;  Xiamen University, Xiamen, Fujian, China > Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics
Wang, Cheng;  Xiamen University, Xiamen, Fujian, China > Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics
NURUNNABI, Abdul Awal Md ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Li, Jonathan;  University of Waterloo, Waterloo, Ontario, Canada > 3Departments of Geography and Environmental Management and Systems Design Engineering
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A boundary-enhanced supervoxel method for extraction of road edges in MLS point clouds
Date de publication/diffusion :
2020
Nom de la manifestation :
ISPRS Congress, 2020
Organisateur de la manifestation :
ISPRS
Lieu de la manifestation :
Nice, France
Date de la manifestation :
31-02 Sepetember, 2020
Manifestation à portée :
International
Titre de l'ouvrage principal :
A boundary-enhanced supervoxel method for extraction of road edges in MLS point clouds
Maison d'édition :
ISPRS
Pagination :
65-71
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 04 mai 2021

Statistiques


Nombre de vues
100 (dont 4 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
3
citations OpenAlex
 
3
citations WoS
 
3

Bibliographie


Publications similaires



Contacter ORBilu