Article (Périodiques scientifiques)
Feasibility of ERA5 integrated water vapor trends for climate change analysis in continental Europe: An evaluation with GPS (1994–2019) by considering statistical significance
Yuan, Peng; HUNEGNAW, Addisu; Alshawaf, Fadwa et al.
2021In Remote Sensing of Environment, 260 (112416)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Yuan et al. IWV trend for climate change 20200827.pdf
Preprint Auteur (2.5 MB)
Author preprint before review
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
climate change; water vapour; IWV; trend; uncertainty; time series; noise; ERA5; GPS
Résumé :
[en] Although the statistical significances for the trends of integrated water vapor (IWV) are essential for a correct interpretation of climate change signals, obtaining accurate IWV trend estimates with realistic uncertainties remains a challenge. This study evaluates the feasibility of the IWV trends derived from the newly released fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis (ERA5) for climate change analysis in continental Europe. This is achieved by comparing the trends derived from in-situ ground-based Global Positioning System (GPS)’s daily IWV series from 1994 to 2019 at 109 stations. The realistic uncertainties and statistical significances of the IWV trends are evaluated with the time series analysis on their noise characteristics and proper noise models. Results show that autoregressive moving average ARMA(1,1) noise model is preferred rather than the commonly assumed white noise (WN) or first-order autoregressive AR(1) noise for about 68% of the ERA5 and GPS IWV series. An improper noise model would misevaluate the trend uncertainty of an IWV time series, compared with its specific preferred noise model. For example, ARMA(1,1) may misevaluate the standard deviations of their trend estimates (0.1–0.3 kg m−2 decade−1) by 10%. Nevertheless, ARMA(1,1) is recommended as the default noise model for the ERA5 and GPS IWV series. However, the preferred noise model for each ERA5 minus GPS (E-G) IWV series should be specifically determined, because the AR(1)-related models can result in an underestimation on its trend uncertainty by 90%. In contrast, power-law (PL) model can lead to an overestimation by up to nine times. The E-G IWV trends are within −0.2–0.4 kg m−2 decade−1, indicating that the ERA5 is a potential data source of IWV trends for climate change analysis in continental Europe. The ERA5 and GPS IWV trends are consistent in their magnitudes and geographical patterns, lower in Northwest Europe (0–0.4 kg m−2 decade−1) but higher around the Mediterranean Sea (0.6–1.4 kg m−2 decade−1).
Disciplines :
Sciences de la terre & géographie physique
Auteur, co-auteur :
Yuan, Peng;  Karlsruhe Institute of Technology > Geodetic Institute
HUNEGNAW, Addisu  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Alshawaf, Fadwa;  Karlsruhe Institute of Technology > Graduate School for Climate and Environment
Awange, Joseph;  Curtin University > School of Earth and Planetary Sciences
Klos, Anna;  Military University of Technology Warsaw > Faculty of Civil Engineering and Geodesy
TEFERLE, Felix Norman  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Kutterer, Hansjörg;  Karlsruhe Institute of Technology > Geodetic Institute
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Feasibility of ERA5 integrated water vapor trends for climate change analysis in continental Europe: An evaluation with GPS (1994–2019) by considering statistical significance
Date de publication/diffusion :
01 juillet 2021
Titre du périodique :
Remote Sensing of Environment
ISSN :
0034-4257
eISSN :
1879-0704
Maison d'édition :
Elsevier, Pays-Bas
Volume/Tome :
260
Fascicule/Saison :
112416
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Projet FnR :
FNR12909050 - Advanced Asymmetry Tropospheric Products For Meteorology From Gnss And Sar Observations, 2018 (01/02/2019-31/07/2022) - Norman Teferle
Intitulé du projet de recherche :
R-AGR-3515-10 VAPOUR
Organisme subsidiant :
German Research Foundation (DFG) 321886779
Fonds National de la Recherche - FnR - Project VAPOUR 12909050
Disponible sur ORBilu :
depuis le 01 mai 2021

Statistiques


Nombre de vues
193 (dont 10 Unilu)
Nombre de téléchargements
449 (dont 5 Unilu)

citations Scopus®
 
45
citations Scopus®
sans auto-citations
32
OpenCitations
 
12
citations OpenAlex
 
74
citations WoS
 
41

Bibliographie


Publications similaires



Contacter ORBilu