Article (Périodiques scientifiques)
Towards global flood mapping onboard low cost satellites with machine learning
Mateo‑Garcia, Gonzalo; Veitch‑Michaelis, Joshua; Smith, Lewis et al.
2021In Scientific Reports, 11 (7249 (2021))
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s41598-021-86650-z.pdf
Postprint Éditeur (2.99 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Earth Observation; Cubsat; Flood detection; Edge processing; Machine Learning; Hyperspectral Imaging
Résumé :
[en] Spaceborne Earth observation is a key technology for flood response, offering valuable information to decision makers on the ground. Very large constellations of small, nano satellites— ’CubeSats’ are a promising solution to reduce revisit time in disaster areas from days to hours. However, data transmission to ground receivers is limited by constraints on power and bandwidth of CubeSats. Onboard processing offers a solution to decrease the amount of data to transmit by reducing large sensor images to smaller data products. The ESA’s recent PhiSat-1 mission aims to facilitate the demonstration of this concept, providing the hardware capability to perform onboard processing by including a power-constrained machine learning accelerator and the software to run custom applications. This work demonstrates a flood segmentation algorithm that produces flood masks to be transmitted instead of the raw images, while running efficiently on the accelerator aboard the PhiSat-1. Our models are trained on WorldFloods: a newly compiled dataset of 119 globally verified flooding events from disaster response organizations, which we make available in a common format. We test the system on independent locations, demonstrating that it produces fast and accurate segmentation masks on the hardware accelerator, acting as a proof of concept for this approach.
Disciplines :
Aérospatiale, astronomie & astrophysique
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Sciences informatiques
Sciences de la terre & géographie physique
Auteur, co-auteur :
Mateo‑Garcia, Gonzalo;  Universidad de Valencia, Valencia, Spain
Veitch‑Michaelis, Joshua;  Liverpool John Moores University
Smith, Lewis;  University of Oxford, Oxford, UK
Oprea, Silviu;  University of Edinburgh, Edinburgh, UK
Schumann, Guy;  University of Bristol, Bristol, UK
Gal, Yarin;  University of Oxford, Oxford, UK
Baydin, Atılım Güneş;  University of Oxford, Oxford, UK
BACKES, Dietmar ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Towards global flood mapping onboard low cost satellites with machine learning
Date de publication/diffusion :
31 mars 2021
Titre du périodique :
Scientific Reports
eISSN :
2045-2322
Maison d'édition :
Nature Publishing Group, London, Royaume-Uni
Volume/Tome :
11
Fascicule/Saison :
7249 (2021)
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Organisme subsidiant :
European Space Agency - ESA, Phi-Lab
Frontiers Development Lab, FDL-Europe
Intel Corporation
Google LLC
University of Oxford
Disponible sur ORBilu :
depuis le 31 mars 2021

Statistiques


Nombre de vues
222 (dont 4 Unilu)
Nombre de téléchargements
2 (dont 2 Unilu)

citations Scopus®
 
169
citations Scopus®
sans auto-citations
155
OpenCitations
 
28
citations OpenAlex
 
181

Bibliographie


Publications similaires



Contacter ORBilu