Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A generalizable performance evaluation model of driving games via risk-weighted trajectories
Flemming, Rory; SCHMÜCK, Emmanuel; MUSSACK, Dominic et al.
2019In Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)
Peer reviewed
 

Documents


Texte intégral
flemming2019.pdf
Postprint Auteur (484.57 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Efficient learning experiences require content to dynamically match a learner's skill; this assumes a fast and accurate assessment of the learner's skill and the ability to update content accordingly. Effective personalized learning therefore involves deriving a performance-predictive mapping between behavioral and environmental factors. Once learned, this relationship can be used to generate new content and to update skill estimates based on the learner's interactions in an adaptive system. To provide proof of concept: (1) We develop a fast-paced driving video game where the player skillfully navigates a cluttered environment comprising obstacles and collectibles. Game content is generated procedurally and player behavior is recorded in the game-this provides an ideal test-bed for a method aiming to learn such a performance-predictive mapping. (2) Using blurred occupancy maps of the game's segments, we generate risk-weighted trajectory profiles for each user and segment of the game. Here, we show that these profiles can be used in a regression model to predict in-game performance both within and between game segments. Additionally, these profiles themselves reveal a trade-off between in-game rewards and risks. Successful identification of predictive environmental units within the game provides insight into the mapping between environmental features and performance, while facilitating the process of procedurally generating new, appropriate content in our adaptive system. We show that rapidly assessed measures of risk are highly predictive of both driving performance and reward rate, providing proof-of-concept evidence for the feasibility of a personalized adaptive learning system for this game.
Disciplines :
Sciences sociales & comportementales, psychologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Flemming, Rory;  University of Minnesota > Department of Psychology
SCHMÜCK, Emmanuel ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
MUSSACK, Dominic ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
CARDOSO-LEITE, Pedro ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
Schrater, Paul;  University of Minnesota > Department of Psychology
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A generalizable performance evaluation model of driving games via risk-weighted trajectories
Date de publication/diffusion :
2019
Nom de la manifestation :
12th International Conference on Educational Data Mining (EDM 2019)
Date de la manifestation :
from 02/07/2019 to 05/07/2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)
Pagination :
551
Peer reviewed :
Peer reviewed
Projet FnR :
FNR11242114 - Scientifically Validated Digital Learning Environments, 2016 (01/06/2017-31/01/2023) - Pedro Cardoso-leite
Organisme subsidiant :
FNR - Fonds National de la Recherche
Commentaire :
548
Disponible sur ORBilu :
depuis le 03 mars 2021

Statistiques


Nombre de vues
145 (dont 6 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0

Bibliographie


Publications similaires



Contacter ORBilu