[en] We prove that any minimal Lagrangian diffeomorphism between two closed spherical surfaces with cone singularities is an isometry, without any assumption on the multiangles of the two surfaces. As an application, we show that every branched immersion of a closed surface of constant positive Gaussian curvature in Euclidean three-space is a branched covering onto a round sphere, thus generalizing the classical rigidity theorem of Liebmann to branched immersions.
Disciplines :
Mathématiques
Auteur, co-auteur :
EL EMAM, Christian ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Seppi, Andrea; Centre National de la Recherche Scientifique - CNRS > Institut Fourier, Université Grenoble Alpes
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces
Date de publication/diffusion :
10 mars 2022
Titre du périodique :
Journal de l'École Polytechnique. Mathématiques
ISSN :
2429-7100
eISSN :
2270-518X
Maison d'édition :
Éditions de l'École Polytechnique, Palaiseau, France
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliographie
T. Barbot, F. Béguin & A. Zeghib – “Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS3”, Geom. Dedicata 126 (2007), p. 71–129.
F. Bonsante & J.-M. Schlenker – “Maximal surfaces and the universal Teichmüller space”, Invent. Math. 182 (2010), no. 2, p. 279–333.
F. Bonsante & A. Seppi – “On Codazzi tensors on a hyperbolic surface and flat Lorentzian geometry”, Internat. Math. Res. Notices (2016), no. 2, p. 343–417.
F. Bonsante & A. Seppi – “Area-preserving diffeomorphisms of the hyperbolic plane and K-surfaces in antide Sitter space”, J. Topology 11 (2018), no. 2, p. 420–468.
F. Bonsante & A. Seppi – “Anti-de Sitter geometry and Teichmüller theory”, in In the tradition of Thurston. Geometry and topology, Springer, Cham, 2020, p. 545–643.
D. Brander – “Spherical surfaces”, Experiment. Math. 25 (2016), no. 3, p. 257–272.
S. Brendle – “Minimal Lagrangian diffeomorphisms between domains in the hyperbolic plane”, J. Differential Geom. 80 (2008), no. 1, p. 1–22.
R. L. Bryant – “Surfaces of mean curvature one in hyperbolic space”, in Théorie des variétés minimales et applications (Palaiseau, 1983–1984), Astérisque, vol. 154-155, Société Mathématique de France, Paris, 1987, p. 321–347.
P. Delanoë – “Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator”, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 5, p. 443–457, Erratum: Ibid. 24 (2007), no. 5, p. 849–850.
J. Eells, Jr. & J. H. Sampson – “Harmonic mappings of Riemannian manifolds”, Amer. J. Math. 86 (1964), p. 109–160.
A. Eremenko, G. Mondello & D. Panov – “Moduli of spherical tori with one conical point”, 2020, arXiv:2008.02772.
D. Ferus – “A remark on Codazzi tensors in constant curvature spaces”, in Global differential geometry and global analysis (Berlin, 1979), Lect. Notes in Math., vol. 838, Springer, Berlin-New York, 1981, p. 257.
J. A. Gálvez, L. Hauswirth & P. Mira – “Surfaces of constant curvature in R3 with isolated singularities”, Adv. Math. 241 (2013), p. 103–126.
W. K. Hayman & P. B. Kennedy – Subharmonic functions. Vol. I, London Math. Soc. Monogr., vol. 9, Academic Press, London, 1976.
H. Hopf – “Über Flächen mit einer Relation zwischen den Hauptkrümmungen”, Math. Nachr. 4 (1951), p. 232–249.
J. H. Hubbard – Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1, Matrix Editions, Ithaca, NY, 2006.
K. Krasnov & J.-M. Schlenker – “Minimal surfaces and particles in 3-manifolds”, Geom. Dedicata 126 (2007), p. 187–254.
F. Labourie – “Surfaces convexes dans l’espace hyperbolique et CP1-structures”, J. London Math. Soc. (2) 45 (1992), no. 3, p. 549–565.
H. B. Lawson – “Complete minimal surfaces in S3”, Ann. of Math. (2) 92 (1970), p. 335–374.
Y. I. Lee – “Lagrangian minimal surfaces in Kähler-Einstein surfaces of negative scalar curvature”, Comm. Anal. Geom. 2 (1994), no. 4, p. 579–592.
G. Li & I. M. C. Salavessa – “Mean curvature flow of spacelike graphs”, Math. Z. 269 (2011), no. 3-4, p. 697–719.
F. Luo & G. Tian – “Liouville equation and spherical convex polytopes”, Proc. Amer. Math. Soc. 116 (1992), no. 4, p. 1119–1129.
R. Mazzeo & H. Weiss – “Teichmüller theory for conic surfaces”, in Geometry, analysis and probability, Progress in Math., vol. 310, Birkhäuser/Springer, Cham, 2017, p. 127–164.
R. Mazzeo & X. Zhu – “Conical metrics on Riemann surfaces. II: Spherical metrics”, 2019, arXiv:1906:09720.
R. Mazzeo & X. Zhu – “Conical metrics on Riemann surfaces I: The compactified configuration space and regularity”, Geom. Topol. 24 (2020), no. 1, p. 309–372.
R. C. McOwen – “Point singularities and conformal metrics on Riemann surfaces”, Proc. Amer. Math. Soc. 103 (1988), no. 1, p. 222–224.
G. Mondello & D. Panov – “Spherical metrics with conical singularities on a 2-sphere: angle constraints”, Internat. Math. Res. Notices (2016), no. 16, p. 4937–4995.
G. Mondello & D. Panov –“Spherical surfaces with conical points: systole inequality and moduli spaces with many connected components”, Geom. Funct. Anal. 29 (2019), no. 4, p. 1110–1193.
V. I. Oliker & U. Simon – “Codazzi tensors and equations of Monge-Ampère type on compact manifolds of constant sectional curvature”, J. reine angew. Math. 342 (1983), p. 35–65
J. H. Sampson – “Some properties and applications of harmonic mappings”, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, p. 211–228.
R. M. Schoen – “The role of harmonic mappings in rigidity and deformation problems”, in Complex geometry (Osaka, 1990), Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, p. 179–200.
G. Smith – “On the Weyl problem in Minkowski space”, 2020, to appear in Internat. Math. Res. Notices, arXiv:2005.01137.
J. Toulisse – “Maximal surfaces in anti–de Sitter 3-manifolds with particles”, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 4, p. 1409–1449.
J. Toulisse – “Minimal diffeomorphism between hyperbolic surfaces with cone singularities”, Comm. Anal. Geom. 27 (2019), no. 5, p. 1163–1203.
S. Trapani & G. Valli – “One-harmonic maps on Riemann surfaces”, Comm. Anal. Geom. 3 (1995), no. 3-4, p. 645–681.
M. Troyanov – “Les surfaces euclidiennes à singularités coniques”, Enseign. Math. (2) 32 (1986), no. 1-2, p. 79–94.
M. Troyanov – “Metrics of constant curvature on a sphere with two conical singularities”, in Differential geometry (Peñíscola, 1988), Lect. Notes in Math., vol. 1410, Springer, Berlin, 1989, p. 296–306.
M. Troyanov – “Prescribing curvature on compact surfaces with conical singularities”, Trans. Amer. Math. Soc. 324 (1991), no. 2, p. 793–821.
M.-T. Wang – “Deforming area preserving diffeomorphism of surfaces by mean curvature flow”, Math. Res. Lett. 8 (2001), no. 5-6, p. 651–661.
J. G. Wolfson – “Minimal Lagrangian diffeomorphisms and the Monge-Ampère equation”, J. Differential Geom. 46 (1997), no. 2, p. 335–373.
Publications similaires
Sorry the service is unavailable at the moment. Please try again later.