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RIGIDITY OF MINIMAL LAGRANGIAN DIFFEOMORPHISMS

BETWEEN SPHERICAL CONE SURFACES

CHRISTIAN EL EMAM AND ANDREA SEPPI

Abstract. We prove that any minimal Lagrangian diffeomorphism between two closed

spherical surfaces with cone singularities is an isometry, without any assumption on

the multiangles of the two surfaces. As an application, we show that every branched

immersion of a closed surface of constant positive Gaussian curvature in Euclidean three-

space is a branched covering onto a round sphere, thus generalizing the classical rigidity

theorem of Liebmann to branched immersions.

1. Introduction

Minimal Lagrangian maps have played an important role in the study of hyperbolic

structures on surfaces. As observed independently by Labourie [Lab92] and Schoen [Sch93],

given two closed hyperbolic surfaces (Σ1, h1) and (Σ2, h2), there exists a unique minimal

Lagrangian diffeomorphism in the homotopy class of every diffeomorphism Σ1 → Σ2. See

also [Lee94] and [TV95, Smi20] for extensions of this result. Alternative proofs have been

provided later, in the context of Anti-de Sitter three-dimensional geometry (see [BBZ07] and

[BS20, §7]), using higher codimension mean curvature flow (see [Wan01] and [LS11]). Using

Anti-de Sitter geometry, the result of Labourie and Schoen has been generalized in various

directions: in [BS10, BS18] in the setting of universal Teichmüller space; in [Tou16] for closed

hyperbolic surfaces with cone singularities of angles in (0, π), provided the diffeomorphism

Σ1 → Σ2 maps cone points to cone points of the same angles. Toulisse then proved in

[Tou19] the existence of minimal maps between closed hyperbolic surface of different cone

angles, by purely analytic methods. We remark that interesting results in a similar spirit

have been obtained for minimal Lagrangian diffeomorphisms between bounded domains in

the Euclidean plane ([Del91, Wol97]) and in a complete non-positively curved Riemannian

surface ([Bre08]).

On the other hand, spherical metrics with cone singularities on a closed surfaces have

been studied in [Tro86, McO88, Tro89, Tro91, LT92]. Very recently the works [MP16,

MP19, AEP20], by geometric methods, and [MW17, MZ20, MZ19], by analytic methods,

developed the study of the deformations spaces of spherical cone metric, highlighting their

complexity.

1.1. Main statement. It thus seems a natural question to ask whether one can find a minimal

Lagrangian diffeomorphism between two spherical cone surfaces. In this paper we answer

negatively to this question, without any assumption on the cone angles. We show that two

spherical cone surfaces do not admit any minimal Lagrangian diffeomorphism unless they

are isometric. When they are isometric, the only minimal Lagrangian diffeomorphisms are

isometries. We summarize these statements as follows:

Theorem 1.1. Given two closed spherical cone surfaces (Σ1, p1, g1) and (Σ2, p2, g2), any

minimal Lagrangian diffeomorphism ϕ : (Σ1, p1, g1) → (Σ2, p2, g2) is an isometry.
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We remark that, as part of our definition (Definition 2.2), a minimal Lagrangian diffeo-

morphism ϕ is a smooth diffeomorphism between Σ1\p1 and Σ2\p2 that extends continuously

to the cone points. A priori, we do not assume that such a smooth map extends smoothly to

the cone points. This subtlety is at the origin of an important technical point in our proof,

which is summarized in Section 1.3 below.

1.2. Surfaces of constant Gauss curvature. We provide an application of our main result for

branched immersions of constant Gaussian curvature in Euclidean three-space, generalizing

the classical Liebmann’s theorem which states that every closed immersed surface of positive

constant Gaussian curvature in Euclidean space is a round sphere.

In [GHM13], Gálvez, Hauswirth and Mira classified the isolated singularities of surfaces

of constant Gaussian curvature. According to their definition, isolated singularities of an

immersion σ : U \ {p} → R3, for U a disc, are those that extend continuously on U . Among

these, they considered extendable singularities, namely those for which the normal vector

extends smoothly at p, and showed that they are either removable, meaning that they extend

to an immersion of U , or branch points, meaning that the Gauss map is locally expressed as

the map z 7→ zk with respect to some coordinates on U and on S2. Here we show a rigidity

result for branched immersions of closed surfaces:

Corollary 1.2. Every branched immersion in Euclidean three-space of a closed surface of

constant positive Gaussian curvature is a branched covering onto a round sphere.

As we mentioned, Corollary 1.2 can be regarded as a generalization of Liebmann’s theo-

rem, which we indeed recover by an independent proof when the immersion has no branch

points. Roughly speaking, we prove Corollary 1.2 by applying Theorem 1.1 to the Gauss

map of a branched immersion σ : Σ → R3, which induces a minimal Lagrangian self-

diffeomorphism of Σ with respect to the first and third fundamental form, both of which are

spherical cone metrics.

Finally, we remark that the hypothesis that the surface Σ is closed is essential in Corollary

1.2, as well as the closedness of Σ1 and Σ2 in Theorem 1.1. Indeed one can find local

deformations of spheres of constant Gaussian curvature, with branch points (see [Bra16]

for many examples) or without (for instance by surfaces of revolution); their Gauss maps

provide non-isometric minimal Lagrangian diffeomorphisms between open spherical surfaces

(with or without cone points).

1.3. Outline of the proof of Theorem 1.1. A map ϕ : (Σ1, p1, g1) → (Σ2, p2, g2) is minimal

Lagrangian if it is area-preserving and its graph (restricted to the nonsingular locus) is

minimal in the product Σ1 × Σ2. A useful characterization is that one can express (on the

nonsingular locus) ϕ∗g2 = g1(b·, b·) for b a (1,1) tensor which is self-adjoint with respect

to g1, positive definite, and satisfies the conditions d∇
g1
b = 0 and det b = 1. For the

sake of completeness, we prove the equivalence of the two definitions in Appendix A. From

this characterization, one sees that minimal Lagrangian maps are those that can be locally

realized as the Gauss maps of surfaces of constant Gaussian curvature one in Euclidean

three-space, as a consequence of the Gauss-Codazzi equations.

Starting by this characterization, using the spherical metric g1 and the (1,1) tensor b, we

produce a pair (G,B) where G is a Riemannian metric on Σ1 and B a (1,1) G-self-adjoint

traceless tensor, satisfying the equations

d∇
G

B = 0 and KG = 1 + detB .
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Although we will not use spherical three-dimensional geometry in this paper, we remark that

these are precisely the Gauss-Codazzi equations for a surface in S3, which is minimal since

B is traceless. Equivalently, by the Lawson correspondence, the pair (G,1+B) satisfies the

Gauss-Codazzi equations for a surface of constant mean curvature one in R3. Such constant

mean curvature surface is realized (at least locally) as the parallel surface from the surface

of constant Gaussian curvature mentioned above, which is determined by the pair (g1, b).

Assuming ϕ : (Σ1, p1, g1) → (Σ2, p2, g2) is a minimal Lagrangian diffeomorphism, the goal of

the proof is to show that B vanishes identically, which is equivalent to ϕ being an isometry.

For this purpose, assuming by contradiction that B does not vanish identically, the next

step consists in computing the Laplace-Beltrami operator of the function χ defined, in the

complement of the zeros of B, as the logarithm of the positive eigenvalue of B (up to a

certain constant). It turns out that ∆Gχ equals the curvature of the metric G, which is

positive (Corollary 3.2), hence χ is subharmonic and negative and the contradiction is then

obtained by an application of the maximum principle.

However, it is essential to prove that the metric G has the conformal type of a punctured

disc in a neighbourhood of every cone point of Σ1. This would be automatically satisfied

assuming some additional regularity on the minimal Lagrangian map ϕ: for instance, if ϕ

is supposed quasiconformal, which is equivalent to boundedness of the (1,1) tensor b, then

g1 and G are quasiconformal, and therefore both g1 and G have the conformal type of a

punctured disc near the cone points. But, as we mentioned above, in our Theorem 1.1

we assume a weaker regularity on ϕ at the cone points, namely we only suppose that ϕ is

continuous.

To prove that G has the conformal type of a punctured disc around the cone points, we

apply the interpretation in terms of surfaces in Euclidean space, and we show that G can be

realized in a punctured neighbourhood U∗ of any cone point as the metric induced by the first

fundamental form of an equivariant immersion of Ũ∗ in R3. We also prove that the normal

vector of the equivariant immersion admits a limit, and the vertical projection induced a

bi-Lipschitz equivalence between G and a flat metric on U∗. A complex analytic argument,

based on Schwarz Reflection Principle, shows that this flat metric has the conformal type of

D∗ at the puncture, and this implies that G has the conformal type of D∗ as well.
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2. Definitions and setup

Let us start by introducing the fundamental definitions and some well-known properties.

2.1. Conical metrics. We give the general definition of cone Riemannian metric.

Definition 2.1. Given a smooth surface Σ and a discrete subset p ⊂ Σ, a cone metric on Σ

is a Riemannian metric g on Σ \ p such that can be written in a punctured neighbourhood

U \ {p} of every point p ∈ p as:

g = e2f |z|2α−2|dz|2 (1)

with respect to a coordinate z : U → C, for f : U \ {p} → R a smooth bounded function

and α ∈ (0, 1) ∪ (1,+∞).

The subset p is called the singular locus, and its complement the regular locus. It will be

convenient to set θ := 2πα, which is called the cone angle at p.

A cone metric is called spherical when it has constant curvature +1 on the regular locus.

In this cases one has the following explicit local expression for the metric tensor (1):

g =
4α2|z|2α−2

(1 + |z|2α)2
|dz|2 . (2)

2.2. Minimal Lagrangian maps. Let us now move on to the definition of minimal Lagrangian

maps.

Definition 2.2. Given two spherical cone surfaces (Σ1, p1, g1) and (Σ2, p2, g2), a minimal

Lagrangian diffeomorphism is a diffeomorphism ϕ : Σ1 \ p1 → Σ2 \ p2, that extends to a

homeomorphism between Σ1 and Σ2, having the property that the unique g1-self-adjoint,

positive definite (1, 1) tensor b on Σ1 \ p1 such that ϕ∗g2 = g1(b·, b·) satisfies the conditions:

det b = 1 and d∇
g1

b = 0 . (3)

Here and in what follows, ∇g denotes the Levi-Civita connection of a Riemannian metric

g. We recall that, for a connection ∇ and a (1, 1) tensor A, the exterior derivative d∇A is

defined as

d∇A(v, w) = ∇v(A(w)) −∇w(A(v)) −A([v, w]) .

A tensor satisfying d∇
g

A = 0 is called Codazzi tensor with respect to the metric g.

For the sake of completeness, in Appendix A we shall prove that Definition 2.2 is equivalent

to the fact that the graph of ϕ is minimal Lagrangian in Σ1 × Σ2, thus justifying the

terminology.

Remark 2.3. It is natural to require that a minimal Lagrangian map maps cone points to

cone points, as in Definition 2.2. Indeed (as we explain in Remark 4.4), if ϕ : (U1, p1, g1) →

(U2, p2, g2) is minimal Lagrangian diffeomorphism between two punctured discs endowed

with metrics of the form (2), then the cone angles of g1 and g2 are necessarily equal. In

particular, if the “cone angle” is 2π for g1 at p1, meaning that the metric extends to a smooth

spherical metric on the disc, then the same holds for g2 at p2, and moreover in this case ϕ

extends smoothly to a minimal Lagrangian diffeomorphism between U1 and U2.
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When a metric is written in the expression g(A·, A·) for A an invertible Codazzi tensor

with respect to g, its connection and curvature are easily related to those of g, as in the

following well-known lemma.

Lemma 2.4 ([KS07, Proposition 3.12]). Let g be a Riemannian metric on a surface Σ and

let A a smooth (1, 1) tensor with d∇
g

A = 0 such that detA vanishes nowhere. Define h =

g(A·, A·). Then the Levi-Civita connections of g and h are related by:

∇h
vw = A−1∇g

v(A(w)) , (4)

and their curvatures by:

Kh =
Kg

detA
. (5)

Remark 2.5. This lemma has two immediate consequences. First, it turns out that the

condition det b = 1 is actually redundant in Definition 2.2. Indeed, assuming d∇g1 b = 0,

it follows from Kg1 = Kϕ∗g2 = 1 and from Equation (5) that det b = 1. Second, the

inverse of a minimal Lagrangian diffeomorphism is minimal Lagrangian, since one can write

g1 = ϕ∗g2(b
−1·, b−1·) and it is easily checked that b−1 is self-adjoint and Codazzi for ϕ∗g2,

using (4). Hence ϕ∗b
−1 := (dϕ) ◦ b−1 ◦ (dϕ)−1 satisfies the conditions in the Definition 2.2

for ϕ−1 : Σ2 → Σ1.

2.3. Defining the pair (G,B). We now introduce the fundamental construction for our

proofs.

Definition 2.6. Given a minimal Lagrangian map ϕ : (Σ1, p1, g1) → (Σ2, p2, g2), we define

on Σ1 \ p1 a Riemannian metric

G =
1

4
g1((1+ b)·, (1+ b)·) ,

and a (1, 1)-tensor

B = (1+ b)−1(b − 1) ,

for b as in Definition 2.2.

Remark 2.7. Definition 2.6 has a symmetry with respect to g1 and g2. More precisely, the

metric G′ on Σ2 \ p2 associated to the map ϕ−1 : (Σ2, p2, g2) → (Σ1, p1, g1), which is again

minimal Lagrangian (Remark 2.5), is isometric to the metric G on Σ1 \ p1.

To see this, we have observed in Remark 2.5 that the (1,1) tensor associated to the minimal

Lagrangian map ϕ−1 in Definition 2.2 is ϕ∗b
−1. Hence G′ is the metric on Σ2 defined by

G′ = (1/4)g2((1+ϕ∗b
−1)·, (1+ϕ∗b

−1)·), and one sees immediately that ϕ∗G′ = G. Similarly,

one finds B′ = −ϕ∗B.

It is immediate to check that B is G-self-adjoint, since b is g1-self-adjoint. The following

lemma is an immediate algebraic computation.

Lemma 2.8. The eigenspaces of B coincide with those of b, and if we denote by λ and 1/λ

the eigenvalues of b, then the eigenvalues of B are

Λ =
λ− 1

1 + λ
and Λ′ =

1− λ

1 + λ
= −Λ .

In particular, B is traceless and |Λ|, |Λ′| < 1. Finally, at any point we have B = 0 if and

only if b = 1.

We observe that the pair (G,B) satisfies the following important properties:
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Proposition 2.9. The following Codazzi equations is satisfied by the pair (G,B):

d∇
G

B = 0 .

Moreover, the curvature of G is positive.

Proof. This is a straightforward verification using Lemma 2.4. Indeed, by Equation (4)

d∇
G

B = (1+ b)−1d∇
g1
(b− 1) = 0

since both 1 and b are g1-Codazzi. For the curvature condition, using Equation (5) we have

KG =
4Kg1

det(1+ b)
=

4

2 + trb
> 0 .

This concludes the proof. �

Remark 2.10. A simple computation shows moreover that

1 + detB = 1 +
2− trb

2 + trb
=

4

2 + trb
= KG .

In other words, together with Proposition 2.9, we see that the pair (G,B) satisfies the

Gauss-Codazzi equation when the ambient manifold is S3. However, in this paper we will

not use spherical geometry; the construction of Section 4 is motivated by the observation

that (G,1+B) satisfy the Gauss-Codazzi equations in Euclidean space E3.

This is the so-called Lawson correspondence introduced in [Law70]: as a consequence of

trB = 0, the Gauss equation KG = 1+detB is equivalent to KG = det(1+B), namely the

Gauss equation in E3; furthermore 1+B is clearly Codazzi with respect to G. In summary,

when lifted to the universal cover of Σ1 \p1, (G,B) provide the immersion data of a minimal

surface in S3, while (G,1+B) those of a constant mean curvature one surface in E3.

3. A maximum principle

The key idea in the proof of Theorem 1.1 is an application of the maximum principle to

show that B is identically zero, that is b is the identity operator (by Lemma 2.8). This will

show that any minimal Lagrangian map ϕ : (Σ1, p1, g1) → (Σ2, p2, g2) is an isometry.

3.1. A bounded subharmonic function. The fundamental relation involved in our application

of the maximum principle is a consequence of the following formula, presented in [KS07,

Lemma 3.11]. Since this is a fundamental step, we provide a quick proof for convenience

of the reader. In Appendix B we give another short proof, entirely based on the fact that

G(B·, ·) is the real part of a holomorphic quadratic differential.

Lemma 3.1. Let G be a Riemannian metric on a surface U and B a traceless G-self-adjoint,

G-Codazzi (1, 1) tensor that does not vanish on U . Denote χ = (1/4) log(− detB). Then

KG = ∆Gχ .

Here we denote by ∆G the Laplace-Beltrami operator of G, with negative spectrum.

Proof. Let e, e′ be an oriented orthonormal frame of eigenvalues of B, so that B(e) = Λe

and B(e′) = Λ′e′ = −Λe′. Let us denote by ω the associated connection form, which satisfies

∇ve = ω(v)e′ and ∇ve
′ = −ω(v)e, where to simplify the notation we set ∇ = ∇G. Since

B does not vanish on U by hypothesis, we can assume moreover that Λ is the positive

eigenvalue of B, so that χ = (1/4) log(Λ2) = (1/2) logΛ.
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First, let us compute the Codazzi condition applied to the frame {e, e′}:

0 = ∇eB(e′)−∇e′B(e)−B(∇ee
′ −∇e′e)

= −(∂eΛ)e
′ − (∂e′Λ)e− 2Λ∇ee

′ − 2Λ∇e′e .

Hence we get ∂eΛ = −2Λω(e′) and ∂e′Λ = 2Λω(e). In terms of χ = (1/2) logΛ, we have

∂eχ = −ω(e′) and ∂e′χ = ω(e).

Second, we compute

KG = −dω(e, e′) = −∂eω(e
′) + ∂e′ω(e) + ω(∇ee

′ −∇e′e)

= ∂e∂eχ+ ∂e′∂e′χ− ω((∂eχ)e
′)− ω((∂e′χ)e)

= Hessχ(e, e) + Hessχ(e′, e′) = ∆Gχ ,

where from the second to the third line we used

Hessχ(e, e) = ∂e∂eχ− ∂∇eeχ = ∂e∂eχ− ∂ω(e)e′χ

= ∂e∂eχ− ω((∂e′χ)e) = ∂e∂eχ− ω(ω(e)e)

= ∂e∂eχ+ ω(∇ee
′) ,

and similarly for Hessχ(e′, e′). �

Proposition 2.9 and Lemma 3.1 show that, on the subset of Σ1 \ p1 where B 6= 0,

∆Gχ > 0 .

We have thus shown that χ is subharmonic. Moreover χ is negative, because |Λ| < 1 by

Lemma 2.8. We summarize these facts as follows:

Corollary 3.2. The function χ = (1/2) log |Λ| is negative and satisfies ∆Gχ > 0 on the

complement of the zeros of B in Σ1 \ p1.

Remark 3.3. Although not essential in the proof, we remark that given a smooth (1, 1) tensor

A, A is g-self-adjoint and traceless if and only if g(A·, ·) is the real part of a holomorphic

quadratic differential ([Hop51], see Proposition A.2). Hence either B ≡ 0 or B vanishes on

a discrete subset of Σ1 \ p1.

3.2. Proof of Theorem 1.1. The main idea of the proof is to apply a maximum principle

argument to the function χ of the previous section. To control the behaviour of χ at the

singularities, we need the following statement on the conformal type of the metric G. Its

proof is postponed to Section 4.

Proposition 3.4. Let Ui be a disc endowed with a spherical metric gi with a cone point at

pi, for i = 1, 2, let ϕ : (U1, p1, g1) → (U2, p2, g2) be a minimal Lagrangian diffeomorphism,

and let b the (1, 1) tensor as in Definition 2.2. Then the conformal structure induced by the

metric G = (1/4)g1((1+ b)·, (1+ b)·) on a neighbourhood of p1 is biholomorphic to D∗.

Assuming Proposition 3.4, we now conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Assume by contradiction that B does not vanish identically. Recall

that the function χ = (1/4) log(− detB) is negative and subharmonic by Corollary 3.2. We

can extend χ to a function on Σ1 \ p1, with values in [−∞,+∞).

Now, pick a cone point p ∈ p1 and a neighbourhood U of p in which the metric G is

biholomorphic to D∗. We claim that

sup
U

χ = max
∂U

χ . (6)



RIGIDITY OF MINIMAL LAGRANGIAN DIFFEOMORPHISMS 8

This will conclude the proof, since it implies that χ has a maximum point in Σ1 \ p1, and

this contradicts Corollary 3.2.

Let us prove (6). Let us pick a biholomorphic chart z : U → D∗, and consider χ as a

function of z. The metric G is expressed in the z-coordinate as e2f |dz|2, hence the Laplace-

Beltrami operator ∆G equals e−2f∆, where ∆ is the flat Laplacian on the disc. By Corollary

3.2, this implies ∆χ > 0 on D∗. Now choose any ǫ > 0. The function χǫ(z) := χ(z)+ ǫ log |z|

still satisfies ∆χǫ > 0 because log |z| is harmonic, and coincides with χ on S1. Moreover χǫ

tends to −∞ at 0, because χ is bounded above. By the maximum principle, χǫ cannot have

an interior maximum point, hence

χǫ(z) ≤ max
S1

χǫ = max
S1

χ

for any z ∈ D∗. It follows that

χ(z) ≤ max
S1

χ− ǫ log |z| .

Since ǫ was chosen arbitrarily, this shows (6) and concludes the proof. �

4. Immersions in Euclidean space

In order to complete the proof of Theorem 1.1 it only remains to prove Proposition 3.4.

We then prove Corollary 1.2. The relation between minimal Lagrangian diffeomorphisms

and immersions in Euclidean space will play an essential role for both results.

4.1. Proof of Proposition 3.4. The guiding idea towards Proposition 3.4 is that, given the

tensor b as in Definition 2.2, the pair (g1, b) represents locally the embedding data of an

immersed surface of constant Gaussian curvature one in Euclidean space, by the fundamental

theorem of surfaces; moreover, there is a parallel constant mean curvature surface whose

first fundamental form is G up to a factor (and whose shape operator is 1 + B, compare

Remark 2.10). However, since Σ1 is not simply connected, we will need to lift (g1, b) to

its universal cover, and refine this approach in order to deal with the equivariance of the

obtained immersion. Moreover, in the proof we find convenient to switch the roles of g1 and

g2, namely we apply the above guiding idea to ϕ−1, see Remark 2.7.

We will apply the following result.

Lemma 4.1 ([Fer81],[OS83, Proposition 1.3.3]). Given a simply connected Riemannian man-

ifold (M, g) of constant sectional curvature K and a self-adjoint (1, 1) tensor A satisfying

the Codazzi equation d∇
g

A = 0, there exists a smooth function u :M → R such that

A = ∇g
•grad

gu+Ku1 .

We observe that the term∇g
•grad

gu is the Hessian of u as a (1, 1) tensor, i.e. Hessgu(v, w) =

g(∇g
vgrad

gu,w).

Proof of Proposition 3.4. To simplify the notation, let us denote U∗
i := Ui \ {pi}. Lift g1

and b to the universal cover Ũ∗
1 . Then b̃ still satisfies the Codazzi equation with respect to

g̃1. By Lemma 4.1 there exists a function u : Ũ∗
1 → R such that

b̃ = ∇g̃1
• gradg̃1u+ u1 .

Pick also a developing map dev : Ũ∗
1 → S2 ⊂ E3 for the spherical structure of g1 on U∗

1 ,

namely dev is a local isometry with respect to the metric g̃1 on Ũ∗
1 . We define the maps
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σ, ς : Ũ∗
1 → E3 by

σ(x) = dev∗(grad
g̃1u) + udev(x) ς(x) =

1

2

(
dev∗(grad

g̃1u) + (u+ 1)dev(x)
)
.

Observe that ς = (1/2)(σ + dev).

Step 1 :Let us show that the first fundamental forms of σ and ς are the lifts to the universal

cover of ϕ∗g2 and G, respectively. Being a local statement, we can isometrically identify an

open neighbourhood of any point of Ũ∗
1 with a subset of S2, so that dev is the identity. By

differentiating σ with this identification, we see that

Dvσx = Dvgrad
S
2

u+ 〈gradS
2

u, v〉x+ uv

= ∇S
2

v grad
S
2

u+ uv = b̃(v) ,

where we used D to denote the ambient derivative in E3, 〈·, ·〉 the metric of E3 (which

restricts to the metric of S2), and from the first to the second line we applied the fact that

the second fundamental form of S2 equals −〈·, ·〉 with respect to the outer unit normal. This

computation has several consequences, namely:

(1)The map σ is an immersion, since its differential is nonsingular.

(2)The normal vector of σ at a point x ∈ Ũ∗
1 is dev(x). Indeed, in the above identification,

x itself is orthogonal to the image of the differential of σ at x. In other words, the

Gauss map of σ is dev.

(3)The first fundamental form of σ equals 〈Dvσx, Dwσx〉 = g̃1(̃b(v), b̃(w)) = ϕ̃∗g2(v, w).

(4)The shape operator of σ is b̃−1, since (performing again the computation locally) the

normal vector is N(x) = x, hence its derivative is dN(v) = v and this equals b̃−1 applied

to Dvσx.

The computation for ς is completely analogous, implying (under the same identification as

above):

(1’)Its differential equals (1/2)(1+ b̃) and is nonsingular.

(2’)Its Gauss map is again dev.

(3’)Its first fundamental form is (1/4)g̃1((1+ b̃)·, (1+ b̃)·) = G̃.

Step 2 :The immersions σ and ς are equivariant with respect to a representation ρ of

π1(U
∗
1 )

∼= Z into the isometry group of E3. Indeed, by construction g̃1 and b̃ are preserved

by the action of Z by deck transformations of Ũ∗
1 , hence so are the first fundamental form

and the shape operator of σ, by the items (3) and (4) of the list above. By the uniqueness

part of the fundamental theorem of surfaces, there exists a representation

ρ : Z → Isom(R3) ∼= SO(3)⋉R3

such that σ ◦ γ = ρ(γ) ◦ σ for every γ ∈ Z.

Now, observe that the developing map dev : Ũ∗
1 → S2 is also equivariant with respect

to a rotation of angle θ1 (modulo 2π), as a consequence of the definition of spherical cone

metric. That is, if we denote by γ1 the standard generator of π1(U
∗
1 ), then

dev(γ1 · q̃) = Rθ1(dev(q̃))

for every q̃ ∈ Ũ∗
1 . Up to composing σ and ς with an element of SO(3), we can assume that

Rθ1 is the rotation fixing (0, 0, 1). By item (2) above, the Gauss map of σ coincides with

dev, hence the linear part of ρ is the holonomy of dev. Concretely, we have for every q̃ ∈ Ũ∗
1 .

σ(γ1 · q̃) = Rθ1(σ(q̃)) + τ
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for some τ ∈ E3. Since ς = (1/2)(σ + dev), it turns out that ς satisfies the equivariance:

ς(γ1 · q̃) = Rθ1(σ(q̃)) +
1

2
τ .

As a consequence of the next step, we will see that, up to composing σ with a translation,

we can assume τ = 0.

Step 3 : In this step we will show that, roughly speaking, the immersions σ and ς admit a

limit in correspondence of the puncture of U∗
1 . Let us denote by D a fundamental domain

for the action of π1(U
∗
1 ) on Ũ∗

1 . We now claim that there exists a point ξ ∈ E3 having

the property that σ(q̃n) → ξ for every sequence q̃n ∈ D such that Π(q̃n) → p1, where

Π : Ũ∗
1 → U∗

1 is the covering projection. To see this, recall that the first fundamental form

of σ is the lift to the universal cover of the spherical cone metric ϕ∗g2. Let us first fix one

sequence q̃n as above. Since the metric completion of (U∗
1 , ϕ

∗g2) is obtained by adding the

cone point p1, q̃n is a Cauchy sequence for the first fundamental form of σ, which is ϕ̃∗g2.

Hence σ(q̃n) is a Cauchy sequence in R3, and it converges. Let us call its limit point ξ.

Now pick any other sequence q̃′n contained in D such that Π(q̃′n) converges to p1. The

distance between q̃n and q̃′n for the first fundamental form of σ tends to zero. Hence also

the Euclidean distance ‖σ(q̃n) − σ(q̃′n)‖ tends to zero, and therefore the limit of σ(q̃′n) is ξ

again. One can in fact repeat the same argument only assuming that q̃′n is contained in the

union ⋃

i∈I

γi · D

for I a finite subset of π1(U
∗
1 )

∼= Z. This observation also shows that the representation ρ

introduced in the previous step fixes ξ, by applying the above argument to q̃′n = ρ(γ)q̃n.

Up to composing with a translation, we will assume ξ = 0, which shows that ρ is a linear

representation, or in other words, τ = 0 in the previous step.

We also obtain an analogous property for ς , namely that for any sequence q̃n ∈ D such

that Π(q̃n) → p1, ς(q̃n) converges to a point in the axis fixed by Rθ1 . But in this case the

proof does not follow from the same argument. Indeed we do not know that the metric G

on U∗
1 has a cone singularity at p1, hence we cannot repeat the above argument wordly.

(This is indeed the reason why so far we dealt with σ and ς simultaneously, although we are

only interested in the final statement for ς .) Nevertheless, since ς = (1/2)(σ+dev) and dev

converges to (0, 0, 1) on any sequence q̃n as above, the conclusion for ς follows immediately,

and the limit of ς is in fact (0, 0, 1) under our assumptions.

Step 4 :Let us now consider the vertical projection π : R3 → R2, namely π(x, y, z) = (x, y).

A fundamental consequence of item (2’) is that the Gauss map of ς (which coincides with

dev) tends to (0, 0, 1) along any sequence q̃n such that Π(q̃n) → p1. It follows that, up to

restricting U1, we can assume that

〈dev(q), (0, 0, 1)〉 > ǫ > 0 . (7)

In other words, the normal vector of ς is never horizontal. This implies that π◦ς : Ũ∗
1 → R2 is

an immersion. Since ς is equivariant with respect to the representation ρ sending a generator

to the rotation Rθ1 around the vertical axis, also π ◦ ς is equivariant with a representation,

which with a little abuse of notation we still denote by ρ, sending the same generator to the

rotation in R2 of angle θ1 (modulo 2π). By this equivariance, the first fundamental forms

of the immersions ς and π ◦ ς induce two Riemannian metrics on U∗
1 : the metric induced by

ς is G as a consequence of item (3’) in Step 1; the metric induced by π ◦ ς , which we call H ,
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is flat. The two metrics G and H are bi-Lipschitz, i.e. there exists a constant C such that

1

C
H(v, w) ≤ G(v, w) ≤ CH(v, w) , (8)

for all v, w tangent to U∗
1 . Indeed, it follows from (7) that that is there exists a constant

C > 1 such that (1/C)G(v, v) ≤ ||dπ ◦ dς(v)||2 ≤ G(v, v) for any vector v tangent to Ũ∗
1 .

Step 5 :We now claim that the conformal structure on U∗
1 induced by the metric H is

biholomorphic to D∗ around the point p1. Recall that any conformal structure on U∗
1 is

biholomorphic to D∗, C∗ or Ar0 = {z ∈ C | 1 < |z| < r0} for some r0 > 1. Let us show that

(U∗
1 , H) cannot be biholomorphic to any Ar0 . Up to restricting the neighbourhood U∗

1 , we

then rule out the case C∗ and conclude the claim.

Suppose by contradiction that there exists a biholomorphism ψ : Ar0 → (U∗
1 , H). Clearly

ψ extends to one of the two boundary components, having limit p1 therein; it is harmless

to assume that such boundary component is {|z| = 1}. Considering the (holomorphic)

universal covering map z 7→ exp(−iz) of Ar0 , defined on

Ãr0 := {z ∈ C | 0 < Im(z) < log(r0)} , (9)

we can lift ψ to a biholomorphism ψ̃ : Ãr0 → (Ũ∗
1 , H̃), where by construction H̃ is the

pull-back metric of the immersion π ◦ ς : Ũ∗
1 → R2. Hence f := π ◦ ς ◦ ψ̃ : Ãr0 → R2 ∼= C

is a holomorphic map. In Steps 2 and 3 we showed that ς(q̃n) tends to the origin for any

sequence q̃n ∈ Ũ∗
1 such that Π(q̃n) → p1. Together with our assumption on ψ, it follows that

f extends continuously to the real line {Im(z) = 0}, which is mapped to 0 ∈ C.

Now pick any point z0 on the real line, and pick any 0 < ǫ0 < log(r0). By Schwarz

Reflection Principle, we can extend f on Ãr0∩B(z0, ǫ0) to a holomorphic map F : B(z0, ǫ0) →

C, which is defined on {Im(z) < 0} ∩ B(z0, ǫ0) by F (z) = f(z). Since f maps the real line

to 0 ∈ C, the holomorphic extension F is constant. But this contradicts the fact that π ◦ ς

is an immersion.

Step 6 :Finally, we can conclude that G has also the conformal type of D∗. Indeed, the

identity id : (U∗
1 , G) → (U∗

1 , H) is bi-Lipschitz by (8), hence it is quasiconformal. Since

H is biholomorphic to D∗ by the previous step, this implies that (U∗
1 , G) cannot have the

conformal type of Ar0 or C∗ and is therefore conformal to D∗, see for instance [Hub06,

§4.3] �

4.2. Proof of Corollary 1.2. Having proved Proposition 3.4, our proof of Theorem 1.1 is

complete. We now provide the proof of Corollary 1.2.

Proof of Corollary 1.2. Suppose ι : Σ1 → E3 is a branched immersion, where p1 is the

(discrete) branching set, and let ν : Σ1 \ p1 → S2 be its Gauss map. It follows from the

definition of branched immersion and the compactness of Σ1 that ν extends to a branched

covering Σ1 → S2. Up to applying a homothety, it is harmless to assume that the (constant)

curvature of ι is one.

Let g1 be the first fundamental form of ι and b its shape operator. Since b = −dν, we

see immediately that ν∗gS2 = g1(b·, b·), where of course gS2 denotes the spherical metric.

The (1, 1) tensor b is g1-self-adjoint and positive definite (up to changing the sign of ν).

Moreover, by the Gauss-Codazzi equations, b satisfies det b = 1 and d∇
g1
b = 0. This shows

that id : (Σ1, p1, g1) → (Σ1, p1, ν
∗gS2) is a minimal Lagrangian diffeomorphism.

We claim that both g1 and ν∗gS2 , which are clearly spherical metrics on Σ1 \p1, have cone

singularities at the points of p1. For ν
∗gS2 , this is clear since ν is a local isometry for ν∗gS2
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and behaves, in a neighbourhood of any p ∈ p1, like a degree d covering onto a punctured

disc in S2. Hence ν∗gS2 has a cone point of cone angle 2dπ.

For g1, pick any point p ∈ p1. We know from the definition that both ι and ν admit

a limit point at p. We can assume that the limit of ι is the origin of R3, and the limit of

ν is (0, 0, 1). We can now repeat Steps 4, 5 and 6 of the proof of Proposition 3.4 to show

that g1 has the conformal type of a punctured disc around p. Let us briefly summarize

these steps for easiness of the reader. As in Step 4, for q in a small neighbourhood U of

p, we have 〈ν(q), (0, 0, 1)〉 > ǫ > 0. Hence π ◦ ι is a locally bi-Lipschitz immersion with

respect to the first fundamental form g1 of ι and the flat metric of R2. More precisely

id : (U, g1) → (U, h1), where h1 is the pull-back metric of π ◦ ι, is bi-Lipschitz. Repeating

Step 5, we show that (U, h1) is biholomorphic to D∗ around p (up to restricting U to rule out

the case C∗): indeed, by lifting a biholomorphism ψ : Ar0 → (U, h1) to the universal cover

(9) and applying Schwarz Reflection Principle to π ◦ ι ◦ ψ̃, one would obtain a contradiction.

As in Step 6, one then shows that g1 has the conformal type of D∗ as well.

Moreover g1 has finite area around p. Indeed h1 has finite area: to see this, let ψ : D∗ →

(U∗, h1) be a biholomorphism, and consider the holomorphic map π ◦ ι ◦ ψ : D∗ → R2,

that extends to a holomorphic map on D, hence has finite degree if restricted to a compact

neighbourhood of 0. Hence the area of h1 is finite around p, and since g1 is bi-Lipschitz to

h1, it has finite area as well. Then we can apply [Bry88, Proposition 4] and deduce that

g1 has a cone point at p, because it is a spherical metric, it is biholomorphic to D∗ in a

neighbourhood of p and has finite area.

Having showed that g1 and ν∗gS2 are spherical cone metrics, it follows from Theorem 1.1

that id : (Σ1, p1, g1) → (Σ1, p1, ν
∗gS2) is an isometry, i.e. g1 = ν∗gS2 . Hence b is the identity

operator. This means that, considering ν as an immersion in R3, its first fundamental form

is g1. Moreover its shape operator is the identity, since its image is a subset of S2. Hence

ι and ν are immersions of Σ1 \ p1 having the same first fundamental form (namely g1) and

the same shape operator (namely the identity). By the uniqueness part of the fundamental

theorem of surfaces, there exists an isometry A of R3 such that ι = A ◦ ν. Since ν is a

branched covering of S2, this implies that ι is a branched covering of some round sphere. �

We observe that in the proof of Corollary 1.2 we are making use of Theorem 1.1 in full

strength, namely under the sole assumption that the minimal Lagrangian diffeomorphism

ϕ extends continuously at the cone points. Indeed, by the definition of branch point for

spherical surfaces, the Gauss map ν of the immersion ι is supposed to extend continuously

at the branch points, without any additional regularity assumption.

4.3. Final remarks. In conclusion, we would like to add some related remarks.

Remark 4.2. Let (G,B) be the pair constructed in Definition 2.6. Recalling that the (1,1)

tensor B is bounded (Lemma 2.8), and G(B·, ·) is the real part of a holomorphic quadratic

differential q for the conformal structure induced by G (see Proposition A.2), a simple

computation shows that if α ∈ (0, 1/2] (i.e. cone angle in (0, π]), then q has at most simple

poles at p. If the cone angle is in (π, 2π] then q does not have a pole, and if the cone angle

is in (kπ, (k + 1)π]) for k ≥ 2 then q has a zero of order at least k − 1.

Remark 4.3. With some more technicalities, similar to those pursued in [BS16, §4] in a

similar Lorentzian setting, one can strengthen the arguments in the proof of Proposition 3.4

and show that the metric G has a cone point of angle θ1 at p. Moreover the immersion ς

induces an embedding of a punctured disc in a singular Euclidean space, namely the singular
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Riemannian manifold

|z|2α1−2|dz|2 + dt2 ,

which is the product of the standard flat metric on R2 with cone angle θ1 = 2πα1 and R.

This induced embedding is orthogonal to the singular locus {z = 0} and its first fundamental

form of is precisely G. We stress that this follows from a local analysis, that is under the

sole assumption that ϕ : (U1, p1, g1) → (U2, p2, g2) is a minimal Lagrangian diffeomorphism

between discs endowed with spherical cone metrics.

Remark 4.4. A consequence of Remark 4.3 is that, if ϕ : (U1, p1, g1) → (U2, p2, g2) is a

minimal Lagrangian diffeomorphism between discs endowed with spherical cone metrics,

then the cone angles of g1 and g2 at p1 and p2 are necessarily equal. Indeed, Remark 4.3

shows that the metric G has a cone point of angle equal θ1 at a point p1; applying the same

remark to ϕ−1 (Remark 2.7), one shows that this cone angle equals also θ2.

This statement holds as well when the “cone angle” equals 2π, in the following sense.

Suppose ϕ is a minimal Lagrangian diffeomorphism between (U1\{p1}, g1) and (U2\{p2}, g2)

where at least one between g1 and g2 extends to a nonsingular spherical metric on the whole

Ui. Then both g1 and g2 are nonsingular spherical metrics on U1 and U2.

In this setting, the arguments of the proof of Proposition 3.4 (up to switching ϕ and

ϕ−1, which does not affect the conclusion) can be adapted to show that ϕ can be realized

as the Gauss map of an embedded surface of constant Gaussian curvature one in R3, and

moreover the embedding extends continuously to p1. Classical regularity for Monge-Ampère

equations then implies (again only by a local analysis) that the embedding extend smoothly

at p1. Therefore the minimal Lagrangian map ϕ extends smoothly to a minimal Lagrangian

diffeomorphism between U1 and U2.

Remark 4.5. As mentioned in the end of the introduction, our Theorem 1.1 and Corollary 1.2

(unlike Remarks 4.3 and 4.4) cannot be improved to purely local statements, and necessarily

require some topological assumption, for instance closedness of the surface. Indeed, examples

of non-isometric minimal Lagrangian diffeomorphisms between domains of S2 can be found

as the Gauss maps of surfaces of constant Gaussian curvature in R3, for instance as surfaces

of revolution. There are also many examples of branched immersions of (necessarily non-

closed) surfaces with constant Gaussian curvature one, whose image is not contained in a

round sphere (see for instance [Bra16]). Following the proof of Corollary 1.2, their Gauss

maps induce minimal Lagrangian diffeomorphisms between open spherical surfaces with cone

angles 2nπ.

Appendix A. Equivalent definitions

In this appendix we show that Definition 2.2 is equivalent to the condition that the

graph of ϕ is a minimal Lagrangian submanifold in the product Σ1 ×Σ2, endowed with the

Riemannian metric g1 ⊕ g2 and with the symplectic form π∗
1dAg1 − π∗

2dAg2 . This is in fact

a local computation.

Proposition A.1. Let (U1, g1) and (U2, g2) be spherical surfaces, ϕ : U1 → U2 a diffeo-

morphism, and b the unique positive definite, g1-self-adjoint (1, 1) tensor on U1 such that

ϕ∗g2 = g1(b·, b·). Then the graph of ϕ is minimal Lagrangian if and only if d∇
g1
b = 0 and

det b = 1.

The proof uses the following well-known characterization of Codazzi tensors, which is also

applied in Appendix B:
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Proposition A.2 ([Hop51]). Given a Riemannian metric G on a surface Σ and a smooth

(1, 1) tensor B, B is G-self-adjoint and traceless if and only if G(B·, ·) is the real part of a

quadratic differential q. Moreover B is G-Codazzi if and only if q is holomorphic.

Proof of Proposition A.1. First, let us observe that the area forms dAg1 and ϕ∗dAg2 differ

by the factor det b, hence the graph of ϕ is Lagrangian (i.e. ϕ is area-preserving) if and only

if det b = 1. In the rest of the proof, we will always assume that both these conditions hold.

It is known ([ES64, §4]) that an immersion F : U →֒ U1 × U2 is minimal if and only

if it is conformal and harmonic, that is, if and only if it is harmonic with respect to the

conformal class of F ∗(g1⊕g2) on U . Applying this to the graphical immersion x 7→ (x, ϕ(x)),

minimality of the graph of ϕ is equivalent to harmonicity of id : (U1, g1 ⊕ ϕ∗g2) → (U1, g1)

and of ϕ : (U1, g1 ⊕ ϕ∗g2) → (U2, g2).

So let us fix ϕ, take b as in the statement, and assume moreover det b = 1. As in

Definition 2.6, we introduce the metric G = (1/4)g1((1 + b)·, (1+ b)·) and the (1, 1) tensor

B = (1+ b)−1(b − 1). One sees immediately that B is G-self-adjoint and traceless.

It turns out that the metric G is conformal to g1⊕ϕ
∗g2. Indeed b

2−tr(b)b+(det b)1 = 0 by

the Cayley-Hamilton theorem, hence 1+ b2 = tr(b)b, which implies g1+ϕ∗g2 = tr(b)g1(b·, ·)

and

G =
1

4

(
1 +

2

tr(b)

)
(g1 + ϕ∗g2) .

Since harmonicity only depends on the conformal class on the source, we will conclude the

proof by showing that d∇
g1
b = 0 if and only if id : (U1, G) → (U1, g1) and ϕ : (U1, G) →

(U2, g2) are harmonic.

As a last preliminary step, a direct computation shows

g1 = G((1 −B)·, (1−B)·) (10)

for B = (1 + b)−1(b − 1) as in Definition 2.6. Using again Cayley-Hamilton, since B is

traceless, B2 = −(detB)1, and it follows that

g1 = (1− detB)G− 2G(B·, ·) .

Since B is G-self-adjoint and traceless, by Proposition A.2 G(B·, ·) is the real part of a

quadratic differential q. Then by definition the Hopf differential of id : (U1, G) → (U1, g1) is

−q. Similarly, one writes

ϕ∗g2 = G((1+B)·, (1 +B)·) = (1− detB)G+ 2G(B·, ·) ,

hence the Hopf differential of ϕ : (U1, G) → (U2, g2) equals q.

Now, Proposition 2.9 shows that if d∇
g1
b = 0, then d∇

G

B = 0, which by Proposition

A.2 is equivalent to q being holomorphic, and therefore that id : (U1, G) → (U1, g1) and

ϕ : (U1, G) → (U2, g2) are harmonic (since id and ϕ are diffeomorphisms, see [Sam78, §9]).

Conversely, suppose that id : (U1, G) → (U1, g1) is harmonic, hence q is holomorphic

and thus by Proposition A.2 B satisfies the Codazzi condition d∇
G

B = 0. Using (10) and

observing that b = (1−B)−1(1+B), one repeats exactly the same proof as in Proposition

2.9 to show that d∇
g1
b = 0. This concludes the desired equivalence. �

Appendix B. Alternative proof of Lemma 3.1

In this appendix we provide a new proof of Lemma 3.1. Denote χ = (1/4) log(− detB),

which is defined in the complement of zeros of B. We will show that

KG = ∆Gχ . (11)
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New proof of Lemma 3.1. Let q be as in Proposition A.2, and assume that q does not vanish

identically. Since (11) is a local statement, we will work on a local isothermal coordinate

z = x + iy. Let us first prove the formula for a flat metric G0 = |dz|2 and a G0-Codazzi

tensor B0. In this case we have:

B0 = G−1
0 Re(q) =

(
Re(φ) −Im(φ)

−Im(φ) −Re(φ)

)
.

where q = φ(z)dz2 is the holomorphic quadratic differential as in Proposition A.2. Hence

χ0 =
1

4
log(− detB0) =

1

4
log(|φ|2) .

To show (11) in this case, it suffices to observe that χ0 is harmonic with respect to G0.

Indeed,

∂zχ0 =
1

4
∂z log(φφ) =

1

4φφ
φ∂zφ =

∂zφ

4φ
.

Hence ∂z∂zχ0 = 0 and χ0 is harmonic.

For the general case, given a Riemannian metric G = e2f |dz|2 and a G-Codazzi tensor

B, as a consequence of Proposition A.2 we have that B0 := e2fB is Codazzi with respect

to the flat metric G0 = e−2fG = |dz|2. Observe that detB0 = e4f detB, hence χ0 =

(1/4) log(− detB0) = χ+ f , and by the flat case discussed in the first part of the proof,

∆G0χ0 = ∆G0χ+∆G0f = 0 .

Using the formula for the curvature and Laplacian of a conformal metric, we have

∆Gχ = e−2f∆G0χ = −e−2f∆G0f = KG

as claimed. �
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geometry, Proc. 3rd Int. Symp., Peñiscola/Spain 1988, Lect. Notes Math. 1410, 296-306 (1989).,

1989. 1

[Tro91] Marc Troyanov. Prescribing curvature on compact surfaces with conical singularities. Trans. Am.

Math. Soc., 324(2):793–821, 1991. 1

[TV95] Stefano Trapani and Giorgio Valli. One-harmonic maps on Riemann surfaces. Commun. Anal.

Geom., 3(4):645–681, 1995. 1



RIGIDITY OF MINIMAL LAGRANGIAN DIFFEOMORPHISMS 17

[Wan01] Mu-Tao Wang. Deforming area preserving diffeomorphism of surfaces by mean curvature flow.

Math. Res. Lett., 8(5-6):651–661, 2001. 1

[Wol97] Jon G. Wolfson. Minimal Lagrangian diffeomorphisms and the Monge-Ampère equation. J. Differ.

Geom., 46(2):335–373, 1997. 1
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