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RIGIDITY OF MINIMAL LAGRANGIAN DIFFEOMORPHISMS
BETWEEN SPHERICAL CONE SURFACES

CHRISTIAN EL EMAM AND ANDREA SEPPI

ABSTRACT. We prove that any minimal Lagrangian diffeomorphism between two closed
spherical surfaces with cone singularities is an isometry, without any assumption on
the multiangles of the two surfaces. As an application, we show that every branched
immersion of a closed surface of constant positive Gaussian curvature in Euclidean three-
space is a branched covering onto a round sphere, thus generalizing the classical rigidity

theorem of Liebmann to branched immersions.

1. INTRODUCTION

Minimal Lagrangian maps have played an important role in the study of hyperbolic
structures on surfaces. As observed independently by Labourie [Lab92] and Schoen [Sch93],
given two closed hyperbolic surfaces (X1, h1) and (X2, ha), there exists a unique minimal
Lagrangian diffeomorphism in the homotopy class of every diffeomorphism ¥; — ¥5. See
also [Lee94] and [TV95, Smi20] for extensions of this result. Alternative proofs have been
provided later, in the context of Anti-de Sitter three-dimensional geometry (see [BBZ07] and
[B520, §7]), using higher codimension mean curvature flow (see [Wan01] and [LS11]). Using
Anti-de Sitter geometry, the result of Labourie and Schoen has been generalized in various
directions: in [BS10, BS18] in the setting of universal Teichmiiller space; in [Tou16] for closed
hyperbolic surfaces with cone singularities of angles in (0, ), provided the diffeomorphism
31 — 39 maps cone points to cone points of the same angles. Toulisse then proved in
[Toul9] the existence of minimal maps between closed hyperbolic surface of different cone
angles, by purely analytic methods. We remark that interesting results in a similar spirit
have been obtained for minimal Lagrangian diffeomorphisms between bounded domains in
the Euclidean plane ([Del91, Wol97]) and in a complete non-positively curved Riemannian
surface ([Bre0g]).

On the other hand, spherical metrics with cone singularities on a closed surfaces have
been studied in [Tro86, McO88, Tro89, Tro9l, LT92]. Very recently the works [MP 10,
MP19, AEP20], by geometric methods, and [MW17, MZ20, MZ19], by analytic methods,
developed the study of the deformations spaces of spherical cone metric, highlighting their
complexity.

1.1. Main statement. It thus seems a natural question to ask whether one can find a minimal
Lagrangian diffeomorphism between two spherical cone surfaces. In this paper we answer
negatively to this question, without any assumption on the cone angles. We show that two
spherical cone surfaces do not admit any minimal Lagrangian diffeomorphism unless they
are isometric. When they are isometric, the only minimal Lagrangian diffeomorphisms are
isometries. We summarize these statements as follows:

Theorem 1.1. Given two closed spherical cone surfaces (X1,p1,91) and (X2,p2,92), any
minimal Lagrangian diffeomorphism ¢ : (X1,p1,91) — (B2, p2,92) is an isometry.
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We remark that, as part of our definition (Definition 2.2), a minimal Lagrangian diffeo-
morphism ¢ is a smooth diffeomorphism between 31\ p; and Yo\ po that extends continuously
to the cone points. A priori, we do not assume that such a smooth map extends smoothly to
the cone points. This subtlety is at the origin of an important technical point in our proof,
which is summarized in Section 1.3 below.

1.2. Surfaces of constant Gauss curvature. We provide an application of our main result for
branched immersions of constant Gaussian curvature in Euclidean three-space, generalizing
the classical Liebmann’s theorem which states that every closed immersed surface of positive
constant Gaussian curvature in Euclidean space is a round sphere.

In | |, Gélvez, Hauswirth and Mira classified the isolated singularities of surfaces
of constant Gaussian curvature. According to their definition, isolated singularities of an
immersion o : U \ {p} — R3, for U a disc, are those that extend continuously on U. Among
these, they considered extendable singularities, namely those for which the normal vector
extends smoothly at p, and showed that they are either removable, meaning that they extend
to an immersion of U, or branch points, meaning that the Gauss map is locally expressed as
the map z — 2" with respect to some coordinates on U and on S?. Here we show a rigidity
result for branched immersions of closed surfaces:

Corollary 1.2. Every branched immersion in Fuclidean three-space of a closed surface of
constant positive Gaussian curvature is a branched covering onto a round sphere.

As we mentioned, Corollary 1.2 can be regarded as a generalization of Liebmann’s theo-
rem, which we indeed recover by an independent proof when the immersion has no branch
points. Roughly speaking, we prove Corollary 1.2 by applying Theorem 1.1 to the Gauss
map of a branched immersion ¢ : ¥ — R3, which induces a minimal Lagrangian self-
diffeomorphism of ¥ with respect to the first and third fundamental form, both of which are
spherical cone metrics.

Finally, we remark that the hypothesis that the surface X is closed is essential in Corollary
1.2, as well as the closedness of 31 and Y5 in Theorem 1.1. Indeed one can find local
deformations of spheres of constant Gaussian curvature, with branch points (see | ]
for many examples) or without (for instance by surfaces of revolution); their Gauss maps
provide non-isometric minimal Lagrangian diffeomorphisms between open spherical surfaces
(with or without cone points).

1.3. Outline of the proof of Theorem 1.1. A map ¢ : (X1,p1,91) — (X2, P2, g2) is minimal
Lagrangian if it is area-preserving and its graph (restricted to the nonsingular locus) is
minimal in the product ¥; x ¥a. A useful characterization is that one can express (on the
nonsingular locus) ¢*ga = g1(b-,b-) for b a (1,1) tensor which is self-adjoint with respect
to g1, positive definite, and satisfies the conditions dV’'b = 0 and detb = 1. For the
sake of completeness, we prove the equivalence of the two definitions in Appendix A. From
this characterization, one sees that minimal Lagrangian maps are those that can be locally
realized as the Gauss maps of surfaces of constant Gaussian curvature one in Euclidean
three-space, as a consequence of the Gauss-Codazzi equations.

Starting by this characterization, using the spherical metric g; and the (1,1) tensor b, we
produce a pair (G, B) where G is a Riemannian metric on ¥; and B a (1,1) G-self-adjoint
traceless tensor, satisfying the equations

ven _ _
d¥ B=0 and Kg=1+4+detB .
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Although we will not use spherical three-dimensional geometry in this paper, we remark that
these are precisely the Gauss-Codazzi equations for a surface in S3, which is minimal since
B is traceless. Equivalently, by the Lawson correspondence, the pair (G, 1 + B) satisfies the
Gauss-Codazzi equations for a surface of constant mean curvature one in R3. Such constant
mean curvature surface is realized (at least locally) as the parallel surface from the surface
of constant Gaussian curvature mentioned above, which is determined by the pair (g1, b).
Assuming ¢ : (21,p1,91) — (22, p2, g2) is a minimal Lagrangian diffeomorphism, the goal of
the proof is to show that B vanishes identically, which is equivalent to ¢ being an isometry.

For this purpose, assuming by contradiction that B does not vanish identically, the next
step consists in computing the Laplace-Beltrami operator of the function x defined, in the
complement of the zeros of B, as the logarithm of the positive eigenvalue of B (up to a
certain constant). It turns out that A%y equals the curvature of the metric G, which is
positive (Corollary 3.2), hence y is subharmonic and negative and the contradiction is then
obtained by an application of the maximum principle.

However, it is essential to prove that the metric G has the conformal type of a punctured
disc in a neighbourhood of every cone point of ¥;. This would be automatically satisfied
assuming some additional regularity on the minimal Lagrangian map ¢: for instance, if ¢
is supposed quasiconformal, which is equivalent to boundedness of the (1,1) tensor b, then
g1 and G are quasiconformal, and therefore both ¢g; and G have the conformal type of a
punctured disc near the cone points. But, as we mentioned above, in our Theorem 1.1
we assume a weaker regularity on ¢ at the cone points, namely we only suppose that ¢ is
continuous.

To prove that G has the conformal type of a punctured disc around the cone points, we
apply the interpretation in terms of surfaces in Euclidean space, and we show that G can be
realized in a punctured neighbourhood U* of any cone point as the metric induced by the first
fundamental form of an equivariant immersion of U* in R3. We also prove that the normal
vector of the equivariant immersion admits a limit, and the vertical projection induced a
bi-Lipschitz equivalence between G and a flat metric on U*. A complex analytic argument,
based on Schwarz Reflection Principle, shows that this flat metric has the conformal type of
D* at the puncture, and this implies that G has the conformal type of D* as well.
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2. DEFINITIONS AND SETUP
Let us start by introducing the fundamental definitions and some well-known properties.
2.1. Conical metrics. We give the general definition of cone Riemannian metric.

Definition 2.1. Given a smooth surface ¥ and a discrete subset p C X, a cone metric on X
is a Riemannian metric g on ¥ \ p such that can be written in a punctured neighbourhood
U\ {p} of every point p € p as:

g = |22 dzf? (1)
with respect to a coordinate z : U — C, for f : U \ {p} — R a smooth bounded function
and « € (0,1) U (1, 400).

The subset p is called the singular locus, and its complement the regular locus. It will be
convenient to set 6 := 2wq, which is called the cone angle at p.

A cone metric is called spherical when it has constant curvature +1 on the regular locus.
In this cases one has the following explicit local expression for the metric tensor (1):

4a2|2|2a—2 )
= ——0—|dz|" . 2
g (1 + |Z|20‘)2| Z| ( )

2.2. Minimal Lagrangian maps. Let us now move on to the definition of minimal Lagrangian
maps.

Definition 2.2. Given two spherical cone surfaces (X1,p1,91) and (X2,p2,92), a minimal
Lagrangian diffeomorphism is a diffeomorphism ¢ : 31 \ p1 — o \ p2, that extends to a
homeomorphism between ¥; and ¥, having the property that the unique g;-self-adjoint,
positive definite (1, 1) tensor b on X5 \ p; such that ¢*go = g1(b-, b-) satisfies the conditions:

detb=1 and dV'b=0. (3)

Here and in what follows, V9 denotes the Levi-Civita connection of a Riemannian metric
g. We recall that, for a connection V and a (1,1) tensor A, the exterior derivative dVA is
defined as

dYA(v,w) = V,(A(w)) — Vi (A(W)) — A([v,w)]) .

A tensor satisfying dV’A = 0 is called Codazzi tensor with respect to the metric g.

For the sake of completeness, in Appendix A we shall prove that Definition 2.2 is equivalent
to the fact that the graph of ¢ is minimal Lagrangian in ¥; x Xg, thus justifying the
terminology.

Remark 2.3. Tt is natural to require that a minimal Lagrangian map maps cone points to
cone points, as in Definition 2.2. Indeed (as we explain in Remark 4.4), if ¢ : (U1,p1,91) —
(Ua,p2, g2) is minimal Lagrangian diffeomorphism between two punctured discs endowed
with metrics of the form (2), then the cone angles of g; and g are necessarily equal. In
particular, if the “cone angle” is 27 for g; at p;, meaning that the metric extends to a smooth
spherical metric on the disc, then the same holds for gs at p2, and moreover in this case ¢
extends smoothly to a minimal Lagrangian diffeomorphism between U; and Us.
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When a metric is written in the expression g(A-, A-) for A an invertible Codazzi tensor
with respect to g, its connection and curvature are easily related to those of g, as in the
following well-known lemma.

Lemma 2.4 ([ , Proposition 3.12]). Let g be a Riemannian metric on a surface ¥ and
let A a smooth (1,1) tensor with d¥°A = 0 such that det A vanishes nowhere. Define h =
g(A-, A-). Then the Levi-Civita connections of g and h are related by:

Viw = ATV (A(w)) (4)
and their curvatures by:
K
K,=—% . 5
" det A (5)

Remark 2.5. This lemma has two immediate consequences. First, it turns out that the
condition detb = 1 is actually redundant in Definition 2.2. Indeed, assuming dVs1b = 0,
it follows from K, = Kg+g, = 1 and from Equation (5) that detb = 1. Second, the
inverse of a minimal Lagrangian diffeomorphism is minimal Lagrangian, since one can write
g1 = ©*g2(b~1-, b7 1) and it is easily checked that b1 is self-adjoint and Codazzi for ¢*go,
using (4). Hence p.b~! := (dp) o b=! o (dp)~! satisfies the conditions in the Definition 2.2
for p=1: ¥y — 2.

2.3. Defining the pair (G, B). We now introduce the fundamental construction for our
proofs.

Definition 2.6. Given a minimal Lagrangian map ¢ : (X1,p1,91) — (Z2,p2,92), we define
on Y1 \ p1 a Riemannian metric

G = igl((]l + b (1+D))

and a (1,1)-tensor
B=(1+b"10b-1),

for b as in Definition 2.2.

Remark 2.7. Definition 2.6 has a symmetry with respect to g; and go. More precisely, the
Ui (32,p2,92) = (X1,p1,91), which is again
minimal Lagrangian (Remark 2.5), is isometric to the metric G on 4 \ p;.

To see this, we have observed in Remark 2.5 that the (1,1) tensor associated to the minimal
1

metric G’ on 33 \ p2 associated to the map ¢~

Lagrangian map ¢~ ! in Definition 2.2 is ¢.b~!. Hence G’ is the metric on Xy defined by
G' = (1/4)ga((14+p«b™ 1), (1+p.b1)-), and one sees immediately that ¢*G’ = G. Similarly,
one finds B’ = —p,B.

It is immediate to check that B is G-self-adjoint, since b is g;-self-adjoint. The following
lemma is an immediate algebraic computation.

Lemma 2.8. The eigenspaces of B coincide with those of b, and if we denote by A and 1/
the eigenvalues of b, then the eigenvalues of B are
A—1 1—A
= — d A/ = — =
1+x T+ A
In particular, B is traceless and |A|,|AN'| < 1. Finally, at any point we have B = 0 if and
only if b= 1.

We observe that the pair (G, B) satisfies the following important properties:
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Proposition 2.9. The following Codazzi equations is satisfied by the pair (G, B):
dVB=0.
Moreover, the curvature of G is positive.
Proof. This is a straightforward verification using Lemma 2.4. Indeed, by Equation (4)
dVB=(1+b)"1d""(b-1)=0

since both 1 and b are g1-Codazzi. For the curvature condition, using Equation (5) we have

4K, 4
Kg = A = 0.
O don(@+b)  2tuh

This concludes the proof. O

Remark 2.10. A simple computation shows moreover that

2 —trb 4

24 trb 2+ trb
In other words, together with Proposition 2.9, we see that the pair (G, B) satisfies the
Gauss-Codazzi equation when the ambient manifold is S®. However, in this paper we will

l+detB=1+ Ko .

not use spherical geometry; the construction of Section 4 is motivated by the observation
that (G, 1 + B) satisfy the Gauss-Codazzi equations in Euclidean space E3.

This is the so-called Lawson correspondence introduced in [ |: as a consequence of
trB = 0, the Gauss equation K = 1+ det B is equivalent to K = det(1 + B), namely the
Gauss equation in E3; furthermore 1 + B is clearly Codazzi with respect to G. In summary,
when lifted to the universal cover of ¥ \ p1, (G, B) provide the immersion data of a minimal
surface in S?, while (G, 1 + B) those of a constant mean curvature one surface in E3.

3. A MAXIMUM PRINCIPLE

The key idea in the proof of Theorem 1.1 is an application of the maximum principle to
show that B is identically zero, that is b is the identity operator (by Lemma 2.8). This will
show that any minimal Lagrangian map ¢ : (X1,p1,91) — (32, P2, g2) is an isometry.

3.1. A bounded subharmonic function. The fundamental relation involved in our application
of the maximum principle is a consequence of the following formula, presented in | ,
Lemma 3.11]. Since this is a fundamental step, we provide a quick proof for convenience
of the reader. In Appendix B we give another short proof, entirely based on the fact that
G(B-,-) is the real part of a holomorphic quadratic differential.

Lemma 3.1. Let G be a Riemannian metric on a surface U and B a traceless G-self-adjoint,
G-Codazzi (1,1) tensor that does not vanish on U. Denote x = (1/4)log(— det B). Then

KG = AGX .
Here we denote by A® the Laplace-Beltrami operator of G, with negative spectrum.

Proof. Let e, e’ be an oriented orthonormal frame of eigenvalues of B, so that B(e) = Ae
and B(e') = A'e’ = —Ae’. Let us denote by w the associated connection form, which satisfies
Ve = w(v)e’ and V,e/ = —w(v)e, where to simplify the notation we set V = V. Since
B does not vanish on U by hypothesis, we can assume moreover that A is the positive
eigenvalue of B, so that y = (1/4) log(A?) = (1/2)logA.
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First, let us compute the Codazzi condition applied to the frame {e,e'}:
0=V.B(e) = VoB(e) — B(Vee' — Vee)
= —(0.A)e' — (O N)e — 2AV €' — 2AV e .
Hence we get 0.A = —2Aw(e’) and JA = 2Aw(e). In terms of x = (1/2)log A, we have
Oex = —w(e’) and O x = w(e).
Second, we compute
K¢ = —dw(e,e') = —0ew(e') + derw(e) + w(Vee' — Vere)
= 0c0eX + 0erOer X — w((9eX)e’) — w((DerX)e)
= Hessx(e, e) + Hessy(e/,e') = A%y,
where from the second to the third line we used
Hessx(e, €) = 0c0cX — 0v,eX = 0e0eX — Ou(e)er X
= 0.0cX — w((Oer X)€) = DO x — w(w(e)e)
= 0e0ex +w(Vee')
and similarly for Hessx (€', e’). O
Proposition 2.9 and Lemma 3.1 show that, on the subset of 3; \ p; where B # 0,
ASy >0.
We have thus shown that x is subharmonic. Moreover x is negative, because |A| < 1 by

Lemma 2.8. We summarize these facts as follows:

Corollary 3.2. The function x = (1/2)log|A| is negative and satisfies A%y > 0 on the
complement of the zeros of B in X1 \ p1.

Remark 3.3. Although not essential in the proof, we remark that given a smooth (1, 1) tensor
A, A is g-self-adjoint and traceless if and only if g(A-,-) is the real part of a holomorphic
quadratic differential (] |, see Proposition A.2). Hence either B = 0 or B vanishes on
a discrete subset of X1 \ p1.

3.2. Proof of Theorem 1.1. The main idea of the proof is to apply a maximum principle
argument to the function x of the previous section. To control the behaviour of x at the
singularities, we need the following statement on the conformal type of the metric G. Its
proof is postponed to Section 4.

Proposition 3.4. Let U; be a disc endowed with a spherical metric g; with a cone point at
pi, for i =1,2, let ¢ : (U1,p1,91) — (Ua,p2,g2) be a minimal Lagrangian diffeomorphism,
and let b the (1,1) tensor as in Definition 2.2. Then the conformal structure induced by the
metric G = (1/4)g1((1 + b)-, (1 4+ b)-) on a neighbourhood of p; is biholomorphic to D*.

Assuming Proposition 3.4, we now conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Assume by contradiction that B does not vanish identically. Recall
that the function x = (1/4)log(— det B) is negative and subharmonic by Corollary 3.2. We
can extend x to a function on 37 \ p1, with values in [—o0, +00).

Now, pick a cone point p € p; and a neighbourhood U of p in which the metric G is
biholomorphic to D*. We claim that

SUP X = Max X - (6)
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This will conclude the proof, since it implies that x has a maximum point in ¥; \ p1, and
this contradicts Corollary 3.2.

Let us prove (6). Let us pick a biholomorphic chart z : U — D*, and consider x as a
function of z. The metric G is expressed in the z-coordinate as e2f|dz|?, hence the Laplace-
Beltrami operator A equals e=2/ A, where A is the flat Laplacian on the disc. By Corollary
3.2, this implies Ax > 0 on D*. Now choose any € > 0. The function x.(z) := x(z)+e€log|z|
still satisfies Ay, > 0 because log |z| is harmonic, and coincides with x on S!. Moreover y.
tends to —oo at 0, because x is bounded above. By the maximum principle, x. cannot have
an interior maximum point, hence

Xe(2) < maxxe = max x
for any z € D*. It follows that
x(2) < max x — elog|z| .

Since e was chosen arbitrarily, this shows (6) and concludes the proof. U

4. IMMERSIONS IN EUCLIDEAN SPACE

In order to complete the proof of Theorem 1.1 it only remains to prove Proposition 3.4.
We then prove Corollary 1.2. The relation between minimal Lagrangian diffeomorphisms
and immersions in Euclidean space will play an essential role for both results.

4.1. Proof of Proposition 3.4. The guiding idea towards Proposition 3.4 is that, given the
tensor b as in Definition 2.2, the pair (g1,b) represents locally the embedding data of an
immersed surface of constant Gaussian curvature one in Euclidean space, by the fundamental
theorem of surfaces; moreover, there is a parallel constant mean curvature surface whose
first fundamental form is G up to a factor (and whose shape operator is 1 + B, compare
Remark 2.10). However, since X is not simply connected, we will need to lift (g1,b) to
its universal cover, and refine this approach in order to deal with the equivariance of the
obtained immersion. Moreover, in the proof we find convenient to switch the roles of g; and

1

g2, namely we apply the above guiding idea to ¢~ ", see Remark 2.7.

We will apply the following result.

Lemma 4.1 (] L.l , Proposition 1.3.3]). Given a simply connected Riemannian man-
ifold (M, g) of constant sectional curvature K and a self-adjoint (1,1) tensor A satisfying
the Codazzi equation d¥°A = 0, there exists a smooth function u : M — R such that

A = Vigrad’u + Kul .

We observe that the term Vegrad?u is the Hessian of v as a (1, 1) tensor, i.e. Hessu(v, w) =
g(Vigradu, w).

Proof of Proposition 3.4. To simplify the notation, let us denote U := U; \ {p;}. Lift ¢1
and b to the universal cover U;. Then b still satisfies the Codazzi equation with respect to
g1- By Lemma 4.1 there exists a function u : Uy — R such that

b= V?l gradglu +ul .

Pick also a developing map dev : UN1* — §? C E3 for the spherical structure of g; on U7,
namely dev is a local isometry with respect to the metric g; on Uy. We define the maps
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o,¢: U — E3 by

o(z) = dev, (grad? u) + udev(z) ¢(z) = (dev*(gradglu) + (u+ 1)dev(z)) .

|~

Observe that ¢ = (1/2)(o + dev).

Step 1:Let us show that the first fundamental forms of o and ¢ are the lifts to the universal
cover of p*gs and G, respectively. Being a local statement, we can isometrically identify an
open neighbourhood of any point of 511 with a subset of S?, so that dev is the identity. By
differentiating ¢ with this identification, we see that

Do, = Dvgradszu + (gradszu, V)T + uv
= V?,Zgradszu +uv = b(v) ,

where we used D to denote the ambient derivative in E?, (-,-) the metric of E3 (which
restricts to the metric of S?), and from the first to the second line we applied the fact that
the second fundamental form of S? equals —(-, -) with respect to the outer unit normal. This
computation has several consequences, namely:
(1)The map o is an immersion, since its differential is nonsingular.
(2)The normal vector of o at a point x € ﬁ/f‘ is dev(z). Indeed, in the above identification,
x itself is orthogonal to the image of the differential of ¢ at x. In other words, the
Gauss map of o is dev.
(3)The first fundamental form of o equals (Dyoy, Dywos) = G1(b(v), b(w)) = @*ga(v, w).
(4)The shape operator of o is ’l;*l, since (performing again the computation locally) the
normal vector is N (z) = x, hence its derivative is dN (v) = v and this equals bt applied
to Dyo,.
The computation for ¢ is completely analogous, implying (under the same identification as
above):
(1")Its differential equals (1/2)(1 + b) and is nonsingular.
(2))Its Gauss map is again dev.
(3")Its first fundamental form is (1/4)g1((1 + b)-, (1 + b)-) = G.

Step 2:The immersions ¢ and ¢ are equivariant with respect to a representation p of
71 (Uy) =2 Z into the isometry group of E®. Indeed, by construction g; and b are preserved
by the action of Z by deck transformations of (71?’ hence so are the first fundamental form
and the shape operator of o, by the items (3) and (4) of the list above. By the uniqueness
part of the fundamental theorem of surfaces, there exists a representation

p:Z — Isom(R?) = SO(3) x R?

such that o oy = p(v) o o for every v € Z.

Now, observe that the developing map dev : UN1* — $? is also equivariant with respect
to a rotation of angle #; (modulo 27), as a consequence of the definition of spherical cone
metric. That is, if we denote by ~; the standard generator of w1 (U5), then

dev(v1 - q) = R, (dev(q))

for every q € @vl* Up to composing o and ¢ with an element of SO(3), we can assume that
Ry, is the rotation fixing (0,0,1). By item (2) above, the Gauss map of o coincides with
dev, hence the linear part of p is the holonomy of dev. Concretely, we have for every g € Uy.

o(n-q) = Re,(0(q)) + 7
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for some 7 € E3. Since ¢ = (1/2)(o + dev), it turns out that ¢ satisfies the equivariance:

1 @) = Ro,(o@) + 57

As a consequence of the next step, we will see that, up to composing o with a translation,
we can assume 7 = 0.

Step 3:In this step we will show that, roughly speaking, the immersions ¢ and ¢ admit a
limit in correspondence of the puncture of U;. Let us denote by D a fundamental domain
for the action of 71 (U;) on [7} We now claim that there exists a point & € E3 having
the property that o(q,) — £ for every sequence g, € D such that II(g,) — p1, where
IT: [7} — U7 is the covering projection. To see this, recall that the first fundamental form
of o is the lift to the universal cover of the spherical cone metric ¢*gs. Let us first fix one
sequence ¢, as above. Since the metric completion of (U5, ¢*g2) is obtained by adding the
cone point p1, ¢, is a Cauchy sequence for the first fundamental form of o, which is E;fz
Hence o(g,) is a Cauchy sequence in R3, and it converges. Let us call its limit point £.
Now pick any other sequence ¢, contained in D such that II(q],) converges to p1. The
distance between ¢, and ¢, for the first fundamental form of o tends to zero. Hence also
the Euclidean distance ||o(gn) — o(q),)|| tends to zero, and therefore the limit of o(gq),) is &
again. One can in fact repeat the same argument only assuming that ¢/, is contained in the

U vi - D
il
for I a finite subset of w1 (Uy) = Z. This observation also shows that the representation p

union

introduced in the previous step fixes £, by applying the above argument to ¢, = p(7)Gn.
Up to composing with a translation, we will assume ¢ = 0, which shows that p is a linear
representation, or in other words, 7 = 0 in the previous step.

We also obtain an analogous property for ¢, namely that for any sequence ¢, € D such
that T1(g,) — p1, <(gn) converges to a point in the axis fixed by Ry,. But in this case the
proof does not follow from the same argument. Indeed we do not know that the metric G
on U7 has a cone singularity at p;, hence we cannot repeat the above argument wordly.
(This is indeed the reason why so far we dealt with o and ¢ simultaneously, although we are
only interested in the final statement for ¢.) Nevertheless, since ¢ = (1/2)(c 4 dev) and dev
converges to (0,0, 1) on any sequence ¢, as above, the conclusion for ¢ follows immediately,
and the limit of ¢ is in fact (0,0, 1) under our assumptions.

Step 4:Let us now consider the vertical projection 7 : R — R2, namely 7 (z,y, 2) = (z,y).
A fundamental consequence of item (2’) is that the Gauss map of ¢ (which coincides with
dev) tends to (0,0,1) along any sequence ¢, such that II(g,) — p1. It follows that, up to
restricting U7, we can assume that

(dev(q), (0,0,1)) >e>0. (7)

In other words, the normal vector of ¢ is never horizontal. This implies that mog : (717« — R?is
an immersion. Since ¢ is equivariant with respect to the representation p sending a generator
to the rotation Ry, around the vertical axis, also 7 o ¢ is equivariant with a representation,
which with a little abuse of notation we still denote by p, sending the same generator to the
rotation in R? of angle #; (modulo 27). By this equivariance, the first fundamental forms
of the immersions ¢ and 7 o¢ induce two Riemannian metrics on U;: the metric induced by
¢ is G as a consequence of item (3’) in Step 1; the metric induced by 7 o ¢, which we call H,
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is flat. The two metrics G and H are bi-Lipschitz, i.e. there exists a constant C' such that
1
EH(v,w) < G(v,w) < CH(v,w) , (8)

for all v,w tangent to U;y. Indeed, it follows from (7) that that is there exists a constant
C > 1 such that (1/C)G(v,v) < ||dm o ds(v)||? < G(v,v) for any vector v tangent to U;.

Step 5:We now claim that the conformal structure on U] induced by the metric H is
biholomorphic to D* around the point p;. Recall that any conformal structure on Uj is
biholomorphic to D*, C* or A,, = {2z € C|1 < |2| < 7o} for some ry > 1. Let us show that
(Uf, H) cannot be biholomorphic to any A,,. Up to restricting the neighbourhood U}, we
then rule out the case C* and conclude the claim.

Suppose by contradiction that there exists a biholomorphism v : A, — (U;, H). Clearly
1 extends to one of the two boundary components, having limit p; therein; it is harmless
to assume that such boundary component is {|z| = 1}. Considering the (holomorphic)
universal covering map z — exp(—iz) of A, , defined on

A, i={z€C|0 < Im(z) < log(ro)} , (9)
we can lift ¥ to a biholomorphism i/; : 1&70 — (&v{‘,ﬁ ), where by construction H is the
pull-back metric of the immersion 7o : &vl* — R2. Hence f :==mocot: A, > R2=C
is a holomorphic map. In Steps 2 and 3 we showed that ¢(g,) tends to the origin for any
sequence ¢, € UN1* such that II(g,) — p1. Together with our assumption on 1, it follows that
f extends continuously to the real line {Im(z) = 0}, which is mapped to 0 € C.

Now pick any point zg on the real line, and pick any 0 < ¢y < log(rg). By Schwarz
Reflection Principle, we can extend f on A\?«EQB(Z(), €o) to a holomorphic map F : B(zg, €9) —
C, which is defined on {Im(z) < 0} N B(z0,¢0) by F(z) = f(%). Since f maps the real line
to 0 € C, the holomorphic extension F' is constant. But this contradicts the fact that wo¢
is an immersion.

Step 6:Finally, we can conclude that G has also the conformal type of D*. Indeed, the
identity id : (Uy,G) — (U, H) is bi-Lipschitz by (8), hence it is quasiconformal. Since
H is biholomorphic to D* by the previous step, this implies that (U5, G) cannot have the
conformal type of A,, or C* and is therefore conformal to D*, see for instance [ ,
§4.3] 0

4.2. Proof of Corollary 1.2. Having proved Proposition 3.4, our proof of Theorem 1.1 is
complete. We now provide the proof of Corollary 1.2.

Proof of Corollary 1.2. Suppose ¢ : ¥; — E? is a branched immersion, where p; is the
(discrete) branching set, and let v : £ \ p1 — S? be its Gauss map. It follows from the
definition of branched immersion and the compactness of ¥; that v extends to a branched
covering X1 — S2. Up to applying a homothety, it is harmless to assume that the (constant)
curvature of ¢ is one.

Let g1 be the first fundamental form of ¢ and b its shape operator. Since b = —dv, we
see immediately that v*gse = ¢1(b-,b-), where of course gs2 denotes the spherical metric.
The (1,1) tensor b is g1-self-adjoint and positive definite (up to changing the sign of v).
Moreover, by the Gauss-Codazzi equations, b satisfies detb = 1 and dV’'b = 0. This shows
that id : (X1, p1,91) — (X1, p1,7*gs2) is a minimal Lagrangian diffeomorphism.

We claim that both ¢g; and v*ggz, which are clearly spherical metrics on ¥ \ p1, have cone
singularities at the points of p;. For v*gse, this is clear since v is a local isometry for v*gg2
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and behaves, in a neighbourhood of any p € p;, like a degree d covering onto a punctured
disc in S%. Hence v*gs2 has a cone point of cone angle 2dr.

For ¢1, pick any point p € p;. We know from the definition that both « and v admit
a limit point at p. We can assume that the limit of ¢ is the origin of R?, and the limit of
v is (0,0,1). We can now repeat Steps 4, 5 and 6 of the proof of Proposition 3.4 to show
that g; has the conformal type of a punctured disc around p. Let us briefly summarize
these steps for easiness of the reader. As in Step 4, for ¢ in a small neighbourhood U of
p, we have (v(q),(0,0,1)) > e > 0. Hence 7 o ¢ is a locally bi-Lipschitz immersion with
respect to the first fundamental form ¢; of ¢ and the flat metric of R?. More precisely
id : (U,g1) — (U, h1), where h; is the pull-back metric of 7 o ¢, is bi-Lipschitz. Repeating
Step 5, we show that (U, hy) is biholomorphic to D* around p (up to restricting U to rule out
the case C*): indeed, by lifting a biholomorphism ¢ : A, — (U, h1) to the universal cover
(9) and applying Schwarz Reflection Principle to moco J, one would obtain a contradiction.
As in Step 6, one then shows that g; has the conformal type of D* as well.

Moreover g1 has finite area around p. Indeed h; has finite area: to see this, let ¢ : D* —
(U*,h1) be a biholomorphism, and consider the holomorphic map 7ot o1 : D* — R?
that extends to a holomorphic map on D, hence has finite degree if restricted to a compact
neighbourhood of 0. Hence the area of h; is finite around p, and since g, is bi-Lipschitz to
hi, it has finite area as well. Then we can apply | , Proposition 4] and deduce that
g1 has a cone point at p, because it is a spherical metric, it is biholomorphic to D* in a
neighbourhood of p and has finite area.

Having showed that g; and v*gs2 are spherical cone metrics, it follows from Theorem 1.1
that id : (X1, p1,91) — (Z1,p1, 7" gs2) is an isometry, i.e. g1 = v*gsz. Hence b is the identity
operator. This means that, considering v as an immersion in R3, its first fundamental form
is g1. Moreover its shape operator is the identity, since its image is a subset of S?. Hence
¢ and v are immersions of ¥ \ p; having the same first fundamental form (namely g¢;) and
the same shape operator (namely the identity). By the uniqueness part of the fundamental
theorem of surfaces, there exists an isometry A of R3 such that ¢+ = A ov. Since v is a
branched covering of S?, this implies that ¢ is a branched covering of some round sphere. [

We observe that in the proof of Corollary 1.2 we are making use of Theorem 1.1 in full
strength, namely under the sole assumption that the minimal Lagrangian diffeomorphism
¢ extends continuously at the cone points. Indeed, by the definition of branch point for
spherical surfaces, the Gauss map v of the immersion ¢ is supposed to extend continuously
at the branch points, without any additional regularity assumption.

4.3. Final remarks. In conclusion, we would like to add some related remarks.

Remark 4.2. Let (G, B) be the pair constructed in Definition 2.6. Recalling that the (1,1)
tensor B is bounded (Lemma 2.8), and G(B-,-) is the real part of a holomorphic quadratic
differential ¢ for the conformal structure induced by G (see Proposition A.2), a simple
computation shows that if & € (0,1/2] (i.e. cone angle in (0,7]), then ¢ has at most simple
poles at p. If the cone angle is in (7, 27| then ¢ does not have a pole, and if the cone angle
is in (km, (k + 1)7]) for k > 2 then ¢ has a zero of order at least k — 1.

Remark 4.3. With some more technicalities, similar to those pursued in | , 84] in a
similar Lorentzian setting, one can strengthen the arguments in the proof of Proposition 3.4
and show that the metric G has a cone point of angle 6; at p. Moreover the immersion ¢
induces an embedding of a punctured disc in a singular Euclidean space, namely the singular
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Riemannian manifold

|22 2 |dz | + dt? |
which is the product of the standard flat metric on R? with cone angle §; = 2wa; and R.
This induced embedding is orthogonal to the singular locus {z = 0} and its first fundamental
form of is precisely G. We stress that this follows from a local analysis, that is under the
sole assumption that ¢ : (U1, p1,91) = (Uz, p2,g2) is a minimal Lagrangian diffeomorphism
between discs endowed with spherical cone metrics.

Remark 4.4. A consequence of Remark 4.3 is that, if ¢ : (U1,p1,91) — (U2,p2,92) is a
minimal Lagrangian diffeomorphism between discs endowed with spherical cone metrics,
then the cone angles of g7 and g at p; and p, are necessarily equal. Indeed, Remark 4.3
shows that the metric G has a cone point of angle equal 8; at a point p;; applying the same
remark to ¢! (Remark 2.7), one shows that this cone angle equals also 6.

This statement holds as well when the “cone angle” equals 27, in the following sense.
Suppose ¢ is a minimal Lagrangian diffeomorphism between (U1 \{p1}, g1) and (U2\{p2}, g2)
where at least one between g1 and go extends to a nonsingular spherical metric on the whole
U;. Then both g1 and g, are nonsingular spherical metrics on U; and Us.

In this setting, the arguments of the proof of Proposition 3.4 (up to switching ¢ and
¢~ 1, which does not affect the conclusion) can be adapted to show that ¢ can be realized
as the Gauss map of an embedded surface of constant Gaussian curvature one in R?, and
moreover the embedding extends continuously to p;. Classical regularity for Monge-Ampere
equations then implies (again only by a local analysis) that the embedding extend smoothly
at p1. Therefore the minimal Lagrangian map ¢ extends smoothly to a minimal Lagrangian
diffeomorphism between U; and Us.

Remark 4.5. As mentioned in the end of the introduction, our Theorem 1.1 and Corollary 1.2
(unlike Remarks 4.3 and 4.4) cannot be improved to purely local statements, and necessarily
require some topological assumption, for instance closedness of the surface. Indeed, examples
of non-isometric minimal Lagrangian diffeomorphisms between domains of S? can be found
as the Gauss maps of surfaces of constant Gaussian curvature in R3, for instance as surfaces
of revolution. There are also many examples of branched immersions of (necessarily non-
closed) surfaces with constant Gaussian curvature one, whose image is not contained in a
round sphere (see for instance | ]). Following the proof of Corollary 1.2, their Gauss
maps induce minimal Lagrangian diffeomorphisms between open spherical surfaces with cone
angles 2nm.

APPENDIX A. EQUIVALENT DEFINITIONS

In this appendix we show that Definition 2.2 is equivalent to the condition that the
graph of ¢ is a minimal Lagrangian submanifold in the product ¥; x ¥s, endowed with the
Riemannian metric g; @ g» and with the symplectic form njdAy, — m5dAg,. This is in fact
a local computation.

Proposition A.1. Let (Ui, g1) and (Ua,g2) be spherical surfaces, ¢ : Uy — Us a diffeo-
morphism, and b the unique positive definite, g1-self-adjoint (1,1) tensor on Uy such that
©*ga = g1(b-,b-). Then the graph of ¢ is minimal Lagrangian if and only if d¥"'b = 0 and
detb =1.

The proof uses the following well-known characterization of Codazzi tensors, which is also
applied in Appendix B:
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Proposition A.2 (] D). Given a Riemannian metric G on a surface ¥ and a smooth
(1,1) tensor B, B is G-self-adjoint and traceless if and only if G(B-,-) is the real part of a
quadratic differential q. Moreover B is G-Codazzi if and only if q is holomorphic.

Proof of Proposition A.1. First, let us observe that the area forms dA4,, and ¢*dA,, differ
by the factor det b, hence the graph of ¢ is Lagrangian (i.e. ¢ is area-preserving) if and only
if det b = 1. In the rest of the proof, we will always assume that both these conditions hold.

It is known ([ , §4]) that an immersion F' : U < U; x Uy is minimal if and only
if it is conformal and harmonic, that is, if and only if it is harmonic with respect to the
conformal class of F*(g1@®g2) on U. Applying this to the graphical immersion x — (z, p(z)),
minimality of the graph of ¢ is equivalent to harmonicity of id : (U1, 91 @ ¢*g2) — (U1, 91)
and of ¢ : (U1, 01 ® ¢*g2) = (Uz, g2)-

So let us fix ¢, take b as in the statement, and assume moreover detb = 1. As in
Definition 2.6, we introduce the metric G = (1/4)g1((1 + b)-, (1 + b)-) and the (1,1) tensor
B = (1+b)"1(b—1). One sees immediately that B is G-self-adjoint and traceless.

It turns out that the metric G is conformal to g1 ®p* g2. Indeed b?—tr(b)b+(det b)1 = 0 by
the Cayley-Hamilton theorem, hence 1 +b? = tr(b)b, which implies g1 + ¢*g2 = tr(b)g1 (b, -)
and

GZi(lJr%) (91 +¢"g2) .

Since harmonicity only depends on the conformal class on the source, we will conclude the
proof by showing that d¥'b = 0 if and only if id : (U1,G) — (U1, ¢1) and ¢ : (U1, G) —
(Us, g2) are harmonic.

As a last preliminary step, a direct computation shows

91 =G((1-B),(1-B)) (10)
for B = (14 b)71(b — 1) as in Definition 2.6. Using again Cayley-Hamilton, since B is
traceless, B2 = —(det B)1, and it follows that

g1=(1—det B)G —2G(B,-) .

Since B is G-self-adjoint and traceless, by Proposition A.2 G(B-,-) is the real part of a
quadratic differential g. Then by definition the Hopf differential of id : (U, G) — (U1, g1) is
—gq. Similarly, one writes

©*g2 = G((1+ B)-,(1+ B)-) = (1 —detB) G+ 2G(B,-) ,
hence the Hopf differential of ¢ : (U, G) — (Ua, g2) equals q.

Now, Proposition 2.9 shows that if dV’'b = 0, then dv°B = 0, which by Proposition
A.2 is equivalent to ¢ being holomorphic, and therefore that id : (U, G) — (U1, ¢1) and
¢ : (U1, G) = (Ua, g2) are harmonic (since id and ¢ are diffeomorphisms, see | , 89)).

Conversely, suppose that id : (U;,G) — (U1, ¢1) is harmonic, hence ¢ is holomorphic
and thus by Proposition A.2 B satisfies the Codazzi condition d¥°B = 0. Using (10) and
observing that b = (1 — B)~!(1 + B), one repeats exactly the same proof as in Proposition
2.9 to show that dV*'b = 0. This concludes the desired equivalence. O

APPENDIX B. ALTERNATIVE PROOF OF LEMMA 3.1

In this appendix we provide a new proof of Lemma 3.1. Denote x = (1/4) log(— det B),
which is defined in the complement of zeros of B. We will show that

Ko =A% (11)
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New proof of Lemma 3.1. Let g be as in Proposition A.2, and assume that ¢ does not vanish
identically. Since (11) is a local statement, we will work on a local isothermal coordinate
z = x +iy. Let us first prove the formula for a flat metric Gy = |dz|? and a Gy-Codazzi
tensor By. In this case we have:

By = Gy 'Reg) = < Re(9) Im(¢))

—Im(¢) —Re(¢)

where ¢ = ¢(z)dz? is the holomorphic quadratic differential as in Proposition A.2. Hence

1 1
X0 = 1 log(—det By) = 1 10g(|¢|2) .

To show (11) in this case, it suffices to observe that xo is harmonic with respect to G.

Indeed, 5
1 1= .
x0 = 0. log(69) = 1 =30.0 = 52

Hence 0:0.x0 = 0 and X is harmonic.

For the general case, given a Riemannian metric G = e2f|dz|? and a G-Codazzi tensor
B, as a consequence of Proposition A.2 we have that By := €2/ B is Codazzi with respect
to the flat metric Go = e 2/G = |dz|2. Observe that det By = e/ det B, hence yo =
(1/4)1og(— det By) = x + f, and by the flat case discussed in the first part of the proof,

A%xo =A%y + A% f=0.
Using the formula for the curvature and Laplacian of a conformal metric, we have
Ay = e 2 AGoy = —¢72fAGof = K,

as claimed. O
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