Article (Périodiques scientifiques)
Machine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance
VU, Thang Xuan; CHATZINOTAS, Symeon; NGUYEN, van Dinh et al.
2021In IEEE Transactions on Wireless Communications, 20 (6), p. 3710 - 3722
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
JASPALong.RoundFinal.pdf
Preprint Auteur (3.13 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
multiuser; MISO; machine learning; precoding; antenna selection; optimization
Résumé :
[en] We investigate the performance of multi-user multiple-antenna downlink systems in which a base station (BS) serves multiple users via a shared wireless medium. In order to fully exploit the spatial diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS is equipped with M RF chains and N antennas, where M < N. Upon receiving pilot sequences to obtain the channel state information (CSI), the BS determines the best subset of M antennas for serving the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize the system sum rate subject to a transmit power constraint and quality of service (QoS) requirements. The JASPD overcomes the non-convexity of the formulated problem via a doubly iterative algorithm, in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that tries all valid antenna subsets. Although approaching the (near) global optimality, the JASPD suffers from a combinatorial complexity, which may limit its application in real-time network operations. To overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm (L-ASPA), which employs a deep neural network (DNN) to establish underlaying relations between the key system parameters and the selected antennas. The proposed L-ASPD is robust against the number of users and their locations, BS's transmit power, as well as the small-scale channel fading. With a well-trained learning model, it is shown that the L-ASPD significantly outperforms baseline schemes based on the block diagonalization and a learning-assisted solution for broadcasting systems and achieves higher effective sum rate than that of the JASPA under limited processing time. In addition, we observed that the proposed L-ASPD can reduce the computation complexity by 95% while retaining more than 95% of the optimal performance.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
VU, Thang Xuan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
NGUYEN, van Dinh ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Dinh, Thai Hoang
Nguyen, Diep N.
Di Renzo, Marco
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Machine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance
Date de publication/diffusion :
27 janvier 2021
Titre du périodique :
IEEE Transactions on Wireless Communications
ISSN :
1536-1276
eISSN :
1558-2248
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
Volume/Tome :
20
Fascicule/Saison :
6
Pagination :
3710 - 3722
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet européen :
H2020 - 742648 - AGNOSTIC - Actively Enhanced Cognition based Framework for Design of Complex Systems
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 18 janvier 2021

Statistiques


Nombre de vues
288 (dont 76 Unilu)
Nombre de téléchargements
210 (dont 27 Unilu)

citations Scopus®
 
41
citations Scopus®
sans auto-citations
34
citations OpenAlex
 
49
citations WoS
 
33

Bibliographie


Publications similaires



Contacter ORBilu