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Abstract—We investigate the performance of multi-user
multiple-antenna downlink systems in which a base station (BS)
serves multiple users via a shared wireless medium. In order to
fully exploit the spatial diversity while minimizing the passive
energy consumed by radio frequency (RF) components, the BS
is equipped with M RF chains and N antennas, where M < N.
Upon receiving pilot sequences to obtain the channel state infor-
mation (CSI), the BS determines the best subset of )/ antennas
for serving the users. We propose a joint antenna selection and
precoding design (JASPD) algorithm to maximize the system sum
rate subject to a transmit power constraint and quality of service
(QoS) requirements. The JASPD overcomes the non-convexity
of the formulated problem via a doubly iterative algorithm, in
which an inner loop successively optimizes the precoding vectors,
followed by an outer loop that tries all valid antenna subsets.
Although approaching the (near) global optimality, the JASPD
suffers from a combinatorial complexity, which may limit its
application in real-time network operations. To overcome this
limitation, we propose a learning-based antenna selection and
precoding design algorithm (L-ASPA), which employs a deep
neural network (DNN) to establish underlaying relations between
the key system parameters and the selected antennas. The
proposed L-ASPD is robust against the number of users and their
locations, BS’s transmit power, as well as the small-scale channel
fading. With a well-trained learning model, it is shown that
the L-ASPD significantly outperforms baseline schemes based
on the block diagonalization [5] and a learning-assisted solution
for broadcasting systems [29] and achieves higher effective sum
rate than that of the JASPA under limited processing time. In
addition, we observed that the proposed L-ASPD can reduce the
computation complexity by 95% while retaining more than 95%
of the optimal performance.

Index Terms—Multiuser, precoding, antenna selection, ma-
chine learning, neural networks, successive convex optimization.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) is an enabling tech-
nology to deal with the rapidly increasing demand for data-
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hungry applications in current and future mobile networks. By
using a large number of antennas, an MIMO base station is
able to send multiple information streams to multiple users
simultaneously with negligible inter-user interference. The
advantages of MIMO systems, under a proper beamforming
design, comprise not only high spectral efficiency but also
improved energy efficiency [1]. When the number of antennas
in MIMO systems becomes very large, antenna selection (AS)
can be employed to improve the performance in terms of both
hardware cost and technological aspects [2]. This is due to
the fact that the radio frequency (RF) chains are usually much
more expensive than antenna elements. More importantly,
a proper AS strategy is capable of not only obtaining full
spatial diversity but also considerably minimizing the RF
chains’ energy consumption, hence improving the system
energy efficiency [3]. In general, AS is an NP-hard problem
whose optimal solution is only guaranteed via exhaustive
search, which tries all possible antenna combinations. The high
complexity of AS may limit its potential in practice, especially
in 5G services which usually have stringent latency and real-
time decision making requirements [4].

Low-complexity solutions have become necessary to make
AS practically feasible, especially for the BS of medium
to large number of antennas. A block diagonalization-based
algorithm is proposed in [5] for multiuser MIMO systems, that
selects the best antennas to either minimize the symbol error
rate (SER) upper bound or maximize the minimum capacity.
This method consecutively eliminates one antenna at a time
that imposes the most energy in the corresponding orthogonal
beamformers. The authors of [6] propose a joint beamforming
design and AS algorithm to minimize the multicasting transmit
power. By using group sparsity-promoting /1 2 norms instead
of the Iy norm, the selected antennas and beamformers can
be obtained via an iterative algorithm. The application of [; 7
norms is also employed in massive MIMO for minimizing the
transmit power [7] and in cell-free MIMO downlink setups for
joint access point selection and power allocation [8]. In [9], an
AS algorithm based on mirror-prox successive convex approx-
imation (SCA) is proposed for maximizing the minimum rate
in multiple-input single-output (MISO) broadcasting systems.
A similar SCA-based approach is proposed in [10], [11] for
energy efficiency maximization.

Recently, the use of machine learning (ML) in commu-
nications systems has attracted much attention [12]-[24].
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The main advantage of ML-aided communications lies in
the capability of establishing underlying relations between
system parameters and the desired objective, hence being
able to shift the computation burden in real-time processing
to the offline training phase [25], [26]. The authors of [16]
propose a beamforming neural network (BNN) for minimizing
the transmit power of multiuser MISO systems, which em-
ploys convolutional neural networks (CNN) and a supervised-
learning method to predict the magnitude and direction of the
beamforming vectors. This method is extended in [17], [18]
for unsupervised-learning to maximize the system weighted
sum-rate. In [19], a deep learning-aided transmission strategy
is proposed for single-user MIMO system with limited feed
back, which is capable of addressing both pilot-aided training
and channel code selection. The authors of [20] develop a
deep learning-based beamforming design to maximize the
spectral efficiency of a single-user millimeter wave (mmWave)
MISO system, which achieves higher spectral efficiency than
conventional hybrid beamforming designs. The application of
Q-learning is developed in [21] to overcome the combinatorial-
complexity task of selecting the best channel impulse response
in vehicle to infrastructure communications. A similar Q-
learning based method is proposed in [23] to solve the
joint design of beamforming, power control, and interference
coordination of cellular networks. In [22], the authors de-
velop a deep reinforcement learning framework which can
autonomously optimize broadcast beams in MIMO broadcast
systems based on users’ measurements. A common data set
for training mmWave MIMO networks is provided in [24]
regarding various performance metrics.

Towards the learning-aided physical layer design, the appli-
cation of ML to AS is a promising way to tackle the high-
complexity of AS [27]-[30]. A joint design for AS and hybrid
beamformers for single-user mmWave MIMO is proposed in
[27] based on two serial CNNs, in which one CNN is used
to predict the selected antennas and another CNN is used to
estimate the hybrid beamformers. The authors of [28] propose
a multi-class classification approach to tackle the AS problem
in single-user MIMO systems based on two classification
methods, namely multiclass k-nearest neighbors and support
vector machine (SVM). In [29], a neural network-based ap-
proach is proposed to reduce the computational complexity of
AS for broadcasting. The neural network (NN) is employed
to directly predict the selected antennas that maximize the
minimum signal to noise ratio among the users. The authors
of [30] propose a learning-based transmit antenna selection
to improve the security in the wiretap channel. Therein, two
learning-based SVM and naive-Bayes schemes are considered.
Although being able to improve the secrecy performance with
a reduced feedback overhead, the setup analyzed in [30] is
limited to only a single antenna selection.

A. Contributions

In this paper, we investigate the performance of a multiuser
MISO downlink system via a joint design of AS and precoding
vectors to improve the system sum rate while guaranteeing the
users’ quality of service (QoS) requirements. Our contributions
are as follows:

« First, we develop a joint antenna selection and beamform-
ing design (JASPD) framework to maximize the effective
system sum rate, which accounts for the time overhead
spent on both channel estimation and computational pro-
cessing, subject to users’ QoS requirements and limited
transmit power budget. The proposed JASPD works in an
iterative manner, which first optimizes the beamforming
vectors for a given antenna subset, and then selects the
best antenna subset.

e Second, to tackle the non-convexity in optimizing the
beamforming vectors of JASPD, we propose two iterative
optimization algorithms based on semidefinite relaxation
(SDR) and SCA methods. The convergence of the pro-
posed iterative algorithms to at least a local optimum is
theoretically guaranteed.

o Third, we propose a learning-based antenna selection and
precoding design (L-ASPD) algorithm to overcome the
high computational complexity of AS, which employs
a deep neural network (DNN) to capture and reveal
the relationship between the system parameters and the
selected antennas via an offline training process. More
importantly, our leaning model is robust against not only
the channel fading but also the number of users and
their locations. Compared to existing works, which either
study single-user MIMO systems [27], [28], a single
beamformer for broadcasting [29] or a single antenna
selection [30], we consider a more general multi-user
system.

o Finally, extensive simulation results show that, under
the same limited processing time, the proposed L-ASPD
outperforms the JASPD and significantly outperforms
existing AS schemes on both model-based [5] and ML-
aided [29] designs. We observed that the L-ASPD can
achieve more than 95% of the optimal sum rate while
reducing more than 95% of the computational time.

The rest of the paper is organized as follows. Section II
presents the system model and key parameters. Section III
develops two iterative optimization algorithms used in the
JASPD. Section IV introduces a ML-aided joint design to
accelerate real-time processing. Section V demonstrates the
effectiveness of the proposed algorithms via simulation results.
Finally, Section IV concludes the paper.

Notations: The superscript (.)T, (.)¥ and Tr(.) stand for
the transpose, Hermitian transpose, and trace operation, re-
spectively. (}) represents the binomial coefficients. |.| and ||.||
denote the cardinality and the lo-norm of a set, respectively.

II. SYSTEM MODEL

We consider a multiuser MISO downlink system operated
in time division duplex (TDD) mode, in which a multi-antenna
base station (BS) servers K single-antenna users in the same
frequency resource', as depicted in Fig. 1. The BS is equipped
with M RF chains and N antennas, where N > M > K.
The motivation of having more antennas than the number of
RF chains is that the BS can i) fully exploit spatial diversity

'In practice the whole bandwidth is divided into multiple sub-frequency
bands. The proposed scheme is directly applied to each band.
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Figure 1. Diagram of multiuser MISO system. A subset of antennas is selected
for data transmission.

gain and ii) minimize the static energy consumed by hardware
components [3], e.g., RF chains and amplifiers. The system
operates in a quasi-static block fading channel in which the
channel gains are constant within on block and independently
change from one block to another. Before sending data to the
users, the BS needs to acquire the channel state information
(CSI) via pilot-aided channel estimation? in order to perform
reprocessing, e.g., beamforming and power allocation.

Fig. 2 illustrates the three phases in one transmission
block. Let T" and 7.,; denote the block duration and channel
estimation time, both expressed in terms of channel use
(c.u.), respectively. The block duration is determined by the
system coherence time. Assuming mutually orthogonal pilot
sequences across the users, the channel estimation time is
Tesi = K(|N/M| 4+ 1) c.u., where |z] denotes the largest
integer not exceeding x. Unlike most of previous works that
ignore the processing time, we consider the general case
in which the processing time takes place in 7p,, (c.u.). In
practice, the value of 7,,, largely depends on beamforming
techniques and the hardware capability.

Let h;, € C'*¥ denote the channel vector from the BS’s
antennas to user k, including the pathloss. We assume that
full CSIs are available at the BS. Because there are only
M < N RF chains, the BS has to determine an optimal
subset of M antennas for sending data to the users. Let
A = {a1,a2,...,ap},am € [N] = {1,2,...,N}, be a
subset of M antennas (out of V), and let .A be the collection of
all possible antenna subsets. By definition, we have | A| = M
and |A] = (7).

Denote by hy 4 € C™M the channel vector from
active antennas in a subset A to user k, ie., hy 4 =
[hila1], hilas), ..., hilar]], where an, € A and hg[n] is
the n-th element of hy. Before serving the users, the BS
first precodes the data to suppress inter-user interference.
Let wy 4 € CM*! be the precoding vector for user k
corresponding to the selected antenna subset 4. The received
signal at user k is

Uk =P awr ami+ Y P awiazi + g, (1)

where 7y, is Gaussian noise with zero mean and variance o2.

The first term in (1) is the desired signal, and the second term

2The system is assumed to operate above certain SNR levels in which the
CSI can be efficiently estimated.
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Figure 2. Block diagram of one transmission block.

is the inter-user interference.
By considering interference as noise, the effective achiev-
able rate of user k is

Ru(A) =B (1 _ W)
T
|k, awp, 4)?
% 1o (1+ AWE, ),Vk, )
&2 Zi;ﬁk|hk,Awi,A|2 +o0?

where B is the shared channel bandwidth and 1 — Te=iFTere
accounts for actual time for data transmission. The total
transmit power’ is S p, [|wg 4|2

Remark 1: 1t is observed from (2) that the effective data rate
is determined not only by the precoding vectors wy, 4 but also
by the channel estimation and processing times. In particular,
spending more time on either channel estimation or processing
will degrade the effective transmission rate.

III. OPTIMAL ANTENNA SELECTION AND PRECODING
DESIGN

In this section, we develop a joint antenna selection and
precoding design to maximize the system sum rate while
satisfying the minimum QoS requirements and limited power
budget. The joint optimization problem can be formulated as
follows:

. . K
maximize

Ri(A
Ac A {wy, 4} Zk:l k( )
s.t. Rk(A) > nk7vka

K 2
Hwk,AH < Piot,
k=1

where Ry (.A) is given in (2), Py is the total transmit power
budget at BS, and 7 is the QoS requirement for user k. In
problem (3), the first constraint is to satisfy the minimum user
QoS requirement and the second constraint states that the total
transmit power should not exceed the power budget. We note
that the problem formulation in (3) can be directly extended
to the weighted sum rate metric for given weight coefficients
with the weights are used as parts of the training input.

In general, problem (3) is a mixed binary non-linear problem
where the binary variables of the activated antennas are
strongly coupled with the continuous variables of the precod-
ing vectors. Because the precoding vectors are designed for a

PO : 3)

3The energy consumed by hardware components is excluded since it is
constant and does not affect the precoding design.
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given selected antenna subset, problem PO can be reformulated
in an iterative form as follows:
imi P1(A), 4
maximize (A) 4)
where P1(.A) is the precoding design problem for the candidate
antenna subset A, which is defined as follows

P1(A):

Max
{wpi, 4

S |hg awp. 4|
B log (1 + kATE, )
} ; ’ 2 ik Pk awi al? + 02

&)

h i 2
by, awp 4] ) > 0, Vk, (5a)

Zi;ﬁk‘hk,Awi,A‘g +0?
K 2
w4l < Prot,
2

where B £ B(1— T=:Tro) and we have used (2) for Ry, (A).

If problem P1(.A) can be solved optimally, then the optimal
solution of PO can be obtained via an exhaustive search in (4),
which tries all possible antenna subsets. Unfortunately, solving
problem P1(.A) is challenging due to the non-concavity of the
objective function and the non-convexity of the first constraint.

In the following, we propose two solutions based on SDR
and SCA methods to tackle the non-convexity of the beam-
forming vectors design in Section III-A. We then describe
the proposed JASPD algorithm and analyze its complexity in
Section III-B.

s.t. Blog, (1 +

(5b)

A. Near Optimal Beamforming Design for Selected Antennas

In this subsection, we design the beamforming vectors to
maximize the system sum rate for a selected antenna subset.
In the following, we propose two methods to solve (5).

1) Semidefinite Relaxation based Solution: Semidefinite-
based formulation is an efficient method to design the beam-
forming vectors of wireless systems, which converts quadratic
terms into linear ones by lifting the original variable domain
into a higher-dimensional space. We adopt the semidefinite
method to deal with the signal-to-noise-plus-interference-ratio
(SINR) term in both the objective function and the first
constraint. Define a new set of variables W}, = wy,, Aw,{f 4 €
CMxM and denote Hy £ h;i{Ahk,_A~ It is straightforward to
verify that [y awy a|? = by aw aw{ il = Te(H W)
and ||wk’A||2 = Tl“(Wk)

By introducing arbitrary positive variables {x) }5_,, we can
reformulate problem (5) as follows:

. B K
maimize 15y 2 ©)
Tr(H Wy,)
R 1 - r ;
) o ( - Zz;ékTr(Hsz) + 0—2) Z T, s ( a)
Tk Z M,V/ﬁ (6b)
B
K
Zkler(Wk) S Ptot; (6(;)

rank(Wp,) = 1, V&,

short-hand notations W and x for
., Wk) and (x1,...,2k), respectively.

where we use

(Wi,..

Algorithm 1 ITERATIVE ALGORITHM TO SOLVE (6)
1: Initialize yq, €, Xo1q and error.
2: while error > ¢ do

3: Solve the SDR of (9) by dropping the rank-one
constraint to obtain {W*klx*ka y*k}le

4: Compute error :7ﬁ| Zszl Tyr — Xold|

s5: Update X,1q < ﬁ S Tk Yo Yk, VE

The equivalence between (6) and (5) can be verified as the
equality holds in (6a) at the optimum. It is observed that the
objective is a linear function and constraints (6b) and (6¢)
are convex. Thus, the challenge in solving problem (6) lies in
(6a) and the rank-one constraint. While the latter constraint
can be efficiently coped with by using the relaxation method
followed by randomization if needed [32], dealing with the
former constraint is more struggling.

In the next step, we introduce slack variables {y;} ; and
reformulate constraint (6a) as

K
og (02 + > " T(HWY)) Zap+y (D)
2
o+ Z#kTr(HkVVZ-) < eV, ®)

Because the function log() is concave, constraint (7) is convex.
However, since the function exp(.) is convex, constraint (8) is
unbounded. To overcome this difficulty, we employ the inner
approximation method, which uses the first-order approxima-
tion of eY at the right hand side of (8). As a result, the
approximated problem of (6) can be formulated as follows:

. B K
P2(yo) : maximize oa(@) Zkzlxk 9
s.t. (6b); (6¢);(7); rank(Wy) = 1, Vk,
ot + > T (HW) < e (g — yor + 1), Yk, Oa)

where y £ {yx}X | and yo is any feasible value of y that
satisfies constraint (8).

It is evident that, for a given yq, the objective and constraints
of problem (9) are convex except for the rank one constraint.
This suggests to solve (9) by the semi-definite relaxation
(SDR) method [32] which ignores the rank one constraint and
can be solved in an efficient manner by standard solvers, e.g.,
CVX. Because e¥(y — yo + 1) < ¥, Vyo, the approximated
problem (9) always gives a suboptimal solution of the original
problem (6).

It is worth noting that the optimal solution of problem (9) is
largely determined by the parameters yq. Thus, it is crucial to
select proper values y, such that the solution of (9) is close to
the optimal solution of (6). As such, we propose an iterative
optimization algorithm to improve the performance of problem
(9), shown in Algorithm 1. The premise behind the proposed
algorithm is to better estimate y, through iterations.

Proposition 1 (Convergence of Algorithm 1): The sequence
of the objective values generated by Algorithm 1 in solving
the SDR of problem P2(yg) is non-decreasing.

The proof of Proposition 1 is shown in Appendix A. Although
not guaranteeing the global optimum of problem (6), Propo-
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sition 1 justifies the convergence to at least a local optimum
of the proposed iterative algorithm®*.

Remark 2 (Initialization of Algorithm 1): The execution
of Algorithm 1 requires initial values yo, Vk. Therefore, it
requires an efficient way to find these initial values before
tackling problem (9). To this end, we start by solving the
feasibility problem below:

Find W (10)
Tr(Hka) 2
s.t. W Z Zz;&kTr(HkWZ) +o ,Vk,

K
> T(Wi) < Por,

which is convex. Then the initial values are computed as yor =
log (3,4 Tr(HyW;') +0?), Vk, where W' is the solution of
(10).

Remark 3 (Randomization): The solution in (9) is based on
the SDR which sometimes violates the rank-one constraint. In
such cases, Gaussian randomization can be adopted. Details
on Gaussian randomization process are available in [32]. Our
simulation results show that more than 99% of the times
Algorithm 1 can output rank-one solutions.

2) Reformulation based on Difference of Convex: The
SDR-based reformulation in the previous subsection leverages
the original problem’s non-convexity by working in a higher
dimensional domain, which requires more memory. In this
subsection, we solve (5) based on difference-of-convex (DC)
reformulation directly on the original variable domain.

By introducing arbitrary positive variables u = {uk}le,
we can reformulate problem (5) as follows:

K
Max&n;ize sz:1 logy (1 + ug) (11)
|k, awp 4]
s.t. Ei¢k|hk,Awi,A|2 e > uy, Vk, (11a)
ug > ik, Vk, (11b)
K
Zklewk,AHQ < Piot, (11c)

where 7, £ 27/F — 1 and w is a short-hand notation for
(w1, 4,..., Wk, 4). The equivalence between (11) and (5) can
be verified since constraint (11a) holds with equality at the
optimum.

As the denominator of the left-hand-side of (11a) is positive,
it can be rewritten as

|hk.Aka‘2 2 2
1Bk AR AL , .
" > § i#\hk,sz,A\ +o

12)

An important observation from (12) is that M isa
convex function of wy, 4 and uy (see Appendix B). Therefore,
(12) has a form of the DC representation, which suggests an
efficient way to solve (11a). In particular, let wy, 4, 4, be any
feasible solution of (11), we can approximate (12) by using the

4The study of the performance gap to the global optimum is left for future
work.

first order approximation of the left-hand-side of (12), stated
as

ng (Hk—FH;F) ’uAJk”A

U,

H 2
E wy sHyw; 4 +0° <
i#k
~H ~ ~H TN 5,
wk,Akak7A wk,A<Hk_Hk)wk7A

— Uk ~9 + ~ )
uy, U

13)

which is obviously convex in wy 4 and uy, where Hj =
h,’;{ ahg A
By using (13) as an approximation of (11a), problem (11)
can be approximated as
A A . . D, K
P3(w, ) : Maxul}frqltlze sz:

11og2(1 + ug) (14)

s.t. (11b); (11c); (13).

For given wy, 4, £, the objective function in (14) is concave
and the constraints are convex, hence it can be solved in
an efficient manner by standard solvers, e.g., CVX. Because
the right-hand-side of (13) is always less than or equal to
w the approximated problem (14) always gives a
subopt1mal solutlon of the original problem (11).

In order to reduce the performance gap between the ap-
proximated problem (14) and the original problem (11), we
propose Algorithm 2 which consists of solving a sequence of
SCA problems. The premise behind the proposed algorithm is
to better select the parameters wy, 4, 4, through iterations.

Algorithm 2 ITERATIVE ALGORITHM TO SOLVE (11)

1: Initialize Wy, 4, Uk, €, Xolq and error.
2: while error > ¢ do

3: Solve problem P3(wy, 4,ux) in (14) to obtain
wi,uf, Vk
4 Compute error = |B Zszl logy (1 + u}) — Xoual

5: Update Xoq < B Y1 logy(1 + u});
wy; Uy +— up, Vk

’lfik’A <

Remark 4 (Initialization of Algorithm 2): Finding a feasible
point is always essential in the SCA. Intuitively, one can think
about the feasibility problem of (5), which is stated as

Maximize 1 (15)
{wy, A}
s.t. 7‘hk AW A| > Z‘hk AwlA\ +O‘ Vk, (15a)
i#k
K 2
> weal® < Peor. (15b)

However, since both sides of (15a) are convex, this constraint
is unbounded. Therefore, finding a feasible point by solving
(15) is not efficient. Instead, we adopt (10) as the mean to find
initial values w, @. In particular, from W, Vk, the solution of
the convex problem (10), we obtain the corresponding feasible

precoding vectors wyg. Then, we assign wy, = wy and 4y =
|hi, aw.er|?
Zz;ﬁklhk AWyi|2 02"
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Algorithm 3 EXHAUSTIVE SEARCH BASED JOINT ANTENNA
SELECTION AND PRECODING DESIGN
Inputs: H, Py, {n:} 2. Outputs: Copr, Aopt, Wopt
1: Construct the super group A ={A | A C [N],|A] = M}
2: Initialize Copr = 0

3 fori=1:|A| do
4: A= Ali]
5: Apply Algorithm 1 or Algorithm 2 on the current

antenna subset A to obtain the optimal X,;4(A) and
W, (A)

6: If Copt < Xold(A)

7: Copt — Xold(A); -Aopt — A; Wopt = W*(-A)

B. JASPD Algorithm and Complexity Analysis

Once the precoding vectors have been optimized for each
antenna subset, i.e., problem (5) is solved, we can tackle the
original optimization problem (3) via Algorithm 3.

The proposed JASPD algorithm consists of two loops:
the outer loop tries all valid antenna subsets, and the inner
loop optimizes the precoding vectors iteratively. While the
complexity of the inner loop is relatively reasonable since
(the SDR of) problem (9) (or problem (14)) is convex [36],
the outer iteration’s complexity increases combinatorially with
the number of antennas. In fact, the JASPD has to examine
all ( J\J\/[[) candidates for the selected antennas. As an example,
for N = 20,M = 8, there are 125970 possible antenna
subsets to be went through, each of which imposes an inner
loop in Algorithm 1 or Algorithm 2. Although guaranteeing
the maximal achievable rate, the proposed JASPD suffers
an exponential complexity due to the selection process. Its
high computation time may limit its applicability in practice
and degrade the effective rate (see (2)). In the next section,
we propose a low-complexity joint design to overcome the
computation burden of the antenna selection process.

IV. ACCELERATING THE OPTIMIZATION: A DEEP
LEARNING-BASED APPROACH

In this section, we exploit recent advances in machine
learning to overcome the major high-complexity limitation of
selection process by proposing a learning-based antenna selec-
tion and precoding design algorithm (L-ASPD). The premise
behind the proposed L-ASPD is to exploit machine-learning
based predictions to help the optimal algorithm to tackle the
most difficult and time-consuming part in the optimization. In
particular, the L-ASPD will first predict potential subsets of
antennas, which will be much smaller than ( ZJZ)

We deploy DNN as the learning model to establish underlay-
ing relations between the system parameters (inputs) and the
selected antenna subset. The DNN consists of three main parts:
one input layer, one output layer and hidden layers, as depicted
in Fig. 3. Based on the labeled data, the DNN will optimize the
learning parameters in order to minimize the prediction error,
e.g., cost function. The L-ASPD is implemented via 3 steps: 1)
offline training data generation, ii) building the learning model,
and iii) real-time prediction.

Input Output

Hidden layers

Figure 3. Illustration of a DNN with three hidden layers.

A. Training Data Generation

Since the communication between the BS and the users is
specified by the channel gains, the transmit power budget and
noise power, they are essential for the learning model. Let
H = [pi ... hi]H € CEXN denote the channel coeffi-
cients from the BS’s antennas to all users. Since the number
of users can be arbitrary between 1 and M (the number of RF
chains), the channel matrix H is first zero-padded to obtain the
standard size H = [H" Ony (-] € CM*N. Because
the NN accepts only real-value inputs, the original complex
representation of the channel matrix is invalid. One can stack
the real and imaginary parts of H and use them as the training
input to the NN [29]. However, we observe that such method
is not efficient to our problem because it does not directly
capture inter-user interference - the major limiting factor in
multiuser systems. As the inter-user interference is determined
by the cross-product of the channel vectors of two users, we
choose = L abs(vec(HH)) € RM**1 a5 the training
input. It is worth noting that the training input x is robust
against the number of users and pathloss, as well as the BS’s
transmit power. Last but not least, & should be normalized
before being fed to the NN, i.e., ¢ = —=

max(x)

Once the input sample is given, we need to define the output,
which is the selected antenna combination that provides the
maximum objective function in (3). For each training input x,
we define an output vector b € {0, 1}(12”\; )*1 that consists of all
possible antenna subsets. b[n] = 1 if the n-th subset is selected,
otherwise b[n] = 0. Because we are interested in selecting only
one subset, we have ||b|lo = 1. In order to compute b, for
each channel realization H (corresponding to x), we run the
proposed JASPD algorithm to find the best antenna subset A*
and then assign the output element b[n*] = 1 corresponding
to A*. Denote by Ng the number of samples used to train
the learning model. The total training input is aggregated
in the input matrix X = [x1,®2,...,ZN,], Where x; is
the ¢-th input sample. Similarly, the training output matrix
is B = [by,...,bng], where b; is the ¢-th output sample
corresponding to the input sample x;. The steps for generating
the training samples are listed in Table I. We note that JASPD
algorithm considered in Table I is used for generating training
samples and is executed off-line. Once the NN is well-trained,
it is used for only the selected antenna subsets in the real-time
prediction phase.
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Table 1
STEPS TO GENERATE TRAINING SAMPLES FOR L-ASPD
1. Fort=1:Ng
2. Generate a random number of users K between [1, M].
3. Generate random locations of these K users between 50 and
300m from the BS. Calculate the pathloss.
4. Generate a channel matrix H € CEXN including
the pathloss.
Output sample generation
5. Run JASPD algorithm to find the best antenna subset.
6. Compute the binary output vector by with only a single
non-zero element corresponding to the selected subset.
Input sample generation
5. Zero-padding: H = [HH,ONX(M_K)]H.
. Calculate x; = %gf abs(vec(ﬁHﬁ)); Ty = mai’ﬁ
7.  Endfor

B. Building the Learning Model

When the training data is available, it will be used to train
the NN with the learning parameter ®. For an L-layer NN,
we have ® = [0;,...,0;], where ; € RV <1 1 <[ < L,
is the learning parameters in the [-th layer, and N; is the
number of nodes in the /-th layer. As the most popular and
efficient candidate for classification problems, we employ a
sigmoid-family tansig(z) = 2(1 + e 2*)~! — 1 as the
activation function for the hidden layers and the soft-max as
the activation function for the output layer. The learning phase
can be done via the minimization of prediction error

A(©) :N%” — Tt(B” log(fe (X)) (16)

_ A
~Tr(B" log(1 = fo(X) [* +55= 3", 110/,

where ) is the regulation parameter, B = 1 — B, and fg(X)
is the prediction of the output layer.

C. Real-time Prediction

When the NN has been well trained, it is ready to pro-
vide real-time and highly accurate predictions. From the
current channel coefficient matrix H, we construct € =
%abs(vec(ﬁHﬁ)), where H = [H 0 (17— )] ¥, which
is then normalized to obtain X,y = #(m) Then Tyorm 1S
used as the input of the trained NN to output the prediction
vector b. It is worth noting that the NN does not provide
absolute prediction, e.g., 0 or 1, but probabilistic uncertainties,
eg, —1< I;[n] < 1,Vn. In general, the larger an element in b
is, the higher chance this element is the best antenna subset.
Consequently, the subset .4,+ corresponding to the largest
output prediction, i.e., n* = argmax, E[n], can be selected.
However, the prediction is not always precise. Therefore, in
order to improve the performance of L-ASPD, instead of
choosing only one best candidate, we select Kg subsets,
denoted by Kg, corresponding to the Kg largest elements in
b. Then, we apply the precoding design (Algorithm 1 or 2) on
these K g subsets. Intuitively, larger values of K g will increase
the chance for the L-ASPD to select the best antenna subset
at an expense of more computation complexity. The steps of
the L-ASPD are listed in Algorithm 4. Compared with the
JASPD, the L-ASPD significantly reduces the computational

Algorithm 4 Proposed L-ASPD Algorithm
Inputs: ©, H, Py, {nk}kK:r Outputs: C,y, Aopt7 Wopt
1: Construct = %gt abs(vec(H" H))?; @porm = e
2: Apply Tporm to the learned model © to predict Kg
3: Initialize Copy = 0
4: for A € Kg
5 Apply Algorithm 1 or 2 on the current subset A to
6
7
8

obtain the optimal X;4(A) and w,, 4
if Copt < Xold(-A)
Oopt = Xold(-A); Aopt — -A; Wopt < Wy A-

time since it tries only Kg promising candidates instead of
( J]C][) Consequently, the L-ASPD is expected to achieve higher
effective sum rate than that of the JASPD, especially when
Ks < (3)

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms via simulation results. The users are uniformly
distributed in an area between 50 and 300 meters from
the centered-BS. We employ the WINNER II line-of-sight
pathloss model [33], which results in that the pathloss is
uniformly distributed between —59.4 dB and —74.6 dB. All
wireless channels are subject to Rayleigh fading. The channel
bandwidth B = 1 MHz and the noise spectral density is -140
dBm/Hz. We adopt the LTE specifications [34] that one c.u.
lasts in one symbol duration and is equal to 66.7 us, and one
block duration is spanned over 200 c.u.. The BS is assumed
to spend 0.2 c.u. to solve one convex optimization problem
[36]. As a result, it takes 0.2K g c.u. to execute the proposed
L-ASPD, where Kg is the number of predicted subsets. We
employ an NN with two hidden layers to train the learning
model for the L-ASPD, each layer consists of 100 nodes’.
SVM can also be employed for its fast training phase, however,
results in poorer performance compared to NN. This is because
SVM results in hyperplanes to discriminate the data whereas
the NN can discriminate data using more elaborate functions.
The NN is trained using the scaled conjugate gradient method.
Other simulation parameters are listed in Table II.

Table II

SIMULATION PARAMETERS
Parameters Value
Cell radius 300 m
BS’s transmit power 1 W-5W
Number of RF chains M 4
Number of antennas N Varies
Number of users K Varies between 1 and M
QoS ni, =n,Vk 2 Mbps
Training method Scaled conjugate gradient
Activation function (hidden layers) tansig
Activation function (output layer) soft — max
Loss function Cross-entropy

SWe heuristically try a different number of hidden layers and find out that
a NN with two hidden layers is sufficient for our problem
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Figure 4. Performance comparison of the proposed Algorithm 1 and 2,
Piot = 37 dBm and K = 4. Both algorithms converge in less than 10
iterations.

A. Convergence of the Proposed Optimization Algorithms

We first evaluate the convergence performance of the pro-
posed iterative Algorithm 1 and 2 presented in Section III.
The results are obtained from 200 random realizations of
channel fading coefficients and users’ locations. For each
realization, we run both Algorithm 1 and 2 until they converge.
Fig. 4a compares the sum-rate obtained by the two proposed
algorithms as a function of the iteration number. It is clearly
shown that both algorithms converge quickly after less than
10 iterations, which demonstrates the effectiveness of the
proposed iterative algorithms.

In order to provide insights on the computation performance
of the proposed algorithms, we show in Fig 4b the sum-rate
versus the simulation time. Both algorithms are carried out
by SeDuMi solver integrated in Matlab 2017b, running on
a personal laptop with the Intel i7-6820HQ CPU and 8GB
RAM. It is observed that Algorithm 2 executes slightly faster
than Algorithm 1, however, achieves a smaller sum-rate. The
performance gain brought by Algorithm 1 results from the
fact that it uses more memory than Algorithm 2, as shown in
Table III. Due to superior performance, we will employ the
proposed Algorithm 1 in the remaining comparisons.

Table III
NUMBER OF VARIABLES REQUIRED BY ALGORITHM 1 AND 2 FOR
DIFFERENT SETUPS FOR N = 8.

M 2 3 4 5
Algorithm 1 267 | 400 | 533 | 666
Algorithm 2 55 94 141 | 196

B. Performance-complexity Trade-off of the L-ASPD

In this subsection, we examine the efficiency of the pro-
posed L-ASPD via a performance-complexity gain trade-off.
By confining the search space of the prediction output, i.e.,
Ks - the number of potential antenna subsets, we can manage
the complexity of L-ASPD since it will work only on Kg
candidates. The complexity gain of L-ASPD is defined as the
relative time saving compared to the exhaustive search that
tries every antenna subsets, calculated as:

N
() — Ks) _ 1 Ks
)G
T\m M
where 7 is the computational time spent on the optimization
of the precoding vectors for a selected antenna subset. The

0(Ks) = (17)

Performance gain (%)

50 60 70 80 90
Complexity gain (%)

95 98

Figure 5. Performance-complexity tradeoft of the proposed L-ASPD. M =
4, N = 8.

Performance (%)
@
8

10° 10* 10°
Number of training samples

Figure 6. Learning (relative) performance versus the number of training
samples. M =4, N = 8.

performance gain is defined as the ratio between the sum rate
obtained by L-ASPD divided by the optimal sum rate which
is achieved by searching all possible antenna subsets.

Fig. 5 plots the performance-complexity tradeoff of the
proposed L-ASPD with M = 4 RF chains and N = 8 total
number of antennas. It is observed that the L-ASPD retains
more than 96% of the optimal sum rate (which is obtained by
exhaustive search) while saving more than 95% complexity.
Even when spending only 2% the computational time, the
L-ASPD still achieves 86% the optimal performance, which
confirms the effectiveness of the proposed L-ASPD algorithm.
Compared with the heuristic solution, the L-ASPD further
reduces more than 13% the computational time at the 95%
performance gain target.

Fig. 6 plots the relative performance in the real-time pre-
diction of L-ASPD versus the number of training samples.
The relative performance is measured as the ratio of the L-
ASPD’s sum rate divided by the one obtained by the JASPD.
Each training sample is generated randomly and captures
the randomness in both channel small-scale fading and user
location. In general, having more training samples results in
better prediction accuracy since the L-ASPD learns more about
the intrinsic relation between the selected antennas and the
input features. It is shown that 2 x 10° training samples are
sufficient for the L-ASPD to achieve more than 94% of the
optimal performance.

C. Online Performance Comparison

This subsection demonstrates the effectiveness of the pro-
posed L-ASPD algorithm via performance comparisons with
existing solutions in difference scenarios. The first baseline
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Figure 7. Sum rate performance of the proposed algorithms versus the number
of predicted subsets Kg. Piot = 33 dBm, M =4 and N = 8.

scheme is proposed in [5], which employs block diagonaliza-
tion to consecutively eliminate antennas that incur the largest
transmit power cost. The second baseline is introduced in [29],
which is a learning-assisted antenna selection for multicasting.
In addition, a Heuristic search is also presented, which also
applies the proposed beamforming design but it searches for
the antenna subset heuristically. We note that comparison with
[27], [28], [30] is not applicable because [27], [28] consider
a single-user system and [30] selects only a single antenna.

Fig. 7 shows the achievable sum rate as a function of Kg
- the most promising subsets predicted by the proposed L-
ASPD algorithm. In order to reveal the benefit of proposed
beamforming design in Algorithm 1, we also show a curve,
which applies a zero-forcing based power control [35] on the
antenna subsets predicted by Algorithm 4. This curve is named
as Proposed - Zero Forcing in the figures. It is shown that the
proposed L-ASPD significantly surpasses all schemes for all
observed Kg values. In general, having more predicted subsets
K g results in a larger sum rate, which is in line with results in
Fig. 5. In particular, by searching over the most five promising
subsets, the proposed L-ASPD achieves 1 Mbps and 2 Mbps
higher than schemes in [29] and [5], respectively. We note
that the sum rate of the scheme in [5] is independent from
K since it predicts the best antenna subset. Similarly, the
performance curve of [29] has a step-shape because it uses
the active antennas as the prediction outputs, hence it is only
able to confine the original search space to (MZ\}'") subsets,
with 0 <n < N — M.

Fig. 8 plots the sum rate as a function of the transmit power.
The effectiveness of the proposed learning-based method is
shown via the largest sum rate achieved by the L-JAPD
compared to other schemes. On average, the L-JAPD algorithm
produces 1.5 Mbps and 2 Mbps more than the solution in
[29] and heuristic scheme, respectively, proving that the NN
has been well trained. Compared to the solution in [5], the
L-ASPD achieves a relative sum rate gain of 5 Mbps and 2
Mbps at the transmit power equal to 30 dBm and 33 dBm,
respectively. One interesting observation is that the Zero-
forcing scheme and the solution in [5] approach the L-ASPD’s
performance when the total transmit power budget increases.
This is because for large P;.:, the BS has sufficient power
budget to fully mitigate inter-user interference. For small P;.;,
the system resource becomes scarce, therefore completely
eliminating inter-user interference is far from the optimum,

14 -
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Total transmit power (dBm)

Figure 8. Sume rate performance of the proposed algorithms versus the total
transmit power Piot. Kg = 7 and N = 8 available antennas.
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Figure 9. Effective sum rate comparison for various number of total antennas
N. Ptot =30 dBm, M = 4, KS = 10.

which is shown in a big gap between the L-ASPD and these
two schemes. In such high-load scenarios, employing the
proposed design is highly beneficial.

Fig. 9 presents the effective sum rate for different total
antennas numbers N. For a fair comparison, the total transmit
power is kept constant at 30 dBm and the total overhead of
channel estimation and computation is taken into account.
For the former, it takes 8 c.u. to obtain the CSI when the
total antenna number is 6,7,8, and takes 12 c.u. when the
number of antennas is 9 and 10. Consider the latter, the
L-ASPD algorithm only searches over 10 most promising
candidates, while the JASPD tries all ( ]]\\/II) antenna subsets.
In general, having more antennas results in higher effective
sum rate of all schemes, which confirms the benefit of an-
tenna selection. Interestingly, the proposed L-ASPD algorithm
achieves the best performance and surpasses the exhaustive
search scheme, especially for large /N, which is in contrast
to common understanding that the exhaustive search achieves
the best performance. This is because we take the computation
time into account in the comparison, as shown in (2). As a
result, the exhaustive search scheme spends too much time
in searching for the best subset, particularly with large NV,
resulting in smaller effective rates. As an example for N = 10,
the exhaustive search scheme requires a computation time
which is 21 times more than that of the L-ASPD.

VI. CONCLUSIONS

We studied the joint design for antenna selection and
precoding vectors in multi-user multi-antenna systems to fully
exploit the spatial diversity. We first proposed a (near) optimal
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joint antenna selection and precoding algorithm to maximize
the system sum rate, subjected to the users’ QoS and lim-
ited transmit power. The proposed joint design successively
optimizes the precoding vectors via two proposed iterative
optimization algorithms based on the semidefinite relaxation
and successive convex approximation methods. In order to
further improve the optimization efficiency, we then developed
the machine learning-based solution to provide appropriate
and time-stringent antenna predictions. The proposed learning-
based algorithm is robust against the number of users and their
locations, the BS’s transmit power, as well as the channel
fading. We showed via simulation results that the proposed
learning-based solution significantly surpasses existing selec-
tion schemes and outperforms the exhaustive search-based
solution.

Based on the outcome of this work, several research direc-
tions can be considered. The first problem is how to improve
the training phase efficiency, which is especially important
when the number of available antennas is very large. In
such a case, a low-complexity precoding design, e.g., zero-
forcing, can be used to quickly obtain sufficient training
samples. The second problem lies in dealing with the network
dynamics, which requires the learning model to frequently and
timely adapted. Transfer leaning and reinforcement learning
are promising solutions in this case to avoid retraining the
whole network.

APPENDIX A
PROOF OF PROPOSITION 1

Denote ( (t), (),yi)) as the optimal solution of

PZ(y(t)) at iteration ¢. We will show that if y(t) < yo ) Yk,

then by using y( ) — yik) in the (¢t + 1)-th iteration, we will

have ), = (H_l) > Zk *k, where {:c(t+ )}k:1 is the solution
at iteration t+ 1. Indeed, by choosing a relatively large initial
value y(() ), we always have y(l) < yé}c),Vk.

Denote f (y;a) = e*(y—a+1) as the first order approxima-
tion of the e¥ functlon at a. At iteration ¢+ 1, we have y(tH)

yitk)ﬁ’k Therefore, f(y;y *k) is used in the right-hand side of

constraint (9a) at the (¢ + 1)-th iteration. Consider a candidate
(t+1) (1) for any y,(Ct+ € (@k,yf}g), where g,

B 1+ evor —var (3B — ((JQ + 1). Because function exp()
(! (t+1) (t)) >

Yuke —
is convex and y( MRS yik), then we have f TYak
d ) >

f (yi?,y(]k) Vk. Therefore, there exits Wk(tﬂ) and x,,

x*tk) which satisfies constraints (7) and (9a). Consider a new

set {WUTD gD ) OFIAK This set satisfies all the
constraints of problem P2(y,(f)), and therefore is a feasible

solution of the optimization problem As the result, the optimal
objective at iteration (t + 1), log ; ka ), must satisfy

t+1 (t+1 .
1og,(Q) Zk = log 2) Zk > >k x*k, which
completes the proof of Proposmon 1.

log(2)

APPENDIX B

CONVEXITY OF FUNCTION Z£2 Am

To prove the convexity of F'(x,y) = % for any positive
semi-definite matrix A, we need to show that the Hessian

10

matrix of F'(x,y) is positive semidefinite. Indeed, the Hessian
matrix of F'(x,y) is

AraT _(A+AT
2
Hp = v
F 2T (A+AT) 207 Aw
y? y3

For arbitrary vector ¢ = [a”b]”, where a € RY*!, consider

a function
a’(A+ AT)a B
Yy
T (A+ AT)ab
y2

a’(A+ AT)zb
y2
2xT Axb?
y3
a"(A+AT)a aT(A—l—AT):l:b
Y i v?
a”Aa—2a" Az + 2" A%
Y
where A 2 AT + A, & xb/y and () results from the
fact that A is symmetric and a” Az = 7 Aa. It is obvious
that the RHS of (18) is always non-negative for y > 0 and
positive semi-definite matrix A, which concludes the positive
semi-definite of the Hessian matrix of F'(x,y).

T
¢ Hre =

T(A+AT)zb?
y3

) (18)
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